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[ Uncertai nty in Water Quality Program

e “Scientific * “Models produce only an

uncertainty isa approximation of reality.
i S Model predictions
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EPA’s Approach to Estimating MOS

» Explicit: toreservea o Implicit: touse
portion of the TMDL conservative model




" Existing MOS Approaches (WERF)

* Review of State Programs

— Six of eight programs surveyed had no standardized
procedure for defining the Margin of Safety
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Why Rigorous Uncertainty Analysisis | mportant?

TMDL under tight
TMDL Schedule by State schedule

TMDL under limited
budget

Limited data
L ess rigorous method

» Great uncertainty in
“TMDL numbers’




Revisit during TMDL Implementation and
Adaptive Management

30-Day Geometric Mean for Modeled Fecal Colform Bacteria
Muddy 1 Subw atershed (4028)

* Implementation
implications of
data poor/high
uncertainty
situations
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[ Approachesto Incorporatinga M OS |

» EPA’sExplicit and Implicit Methods
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First Order Error Analysis

» First Order Error Analysis (FOEA)

— Intermediate method (not overly complex;
computational efficiency)
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Muddy Creek: Land Use and Nitrogen Sources
e Land Use

o — Forest 34%

Row Crop 26%

: — Pasture 30%
— Loafing Lot 1%

+*

Map Legend

Selected Land Use
[ Farmstezd
[ Pasture
= Row Crops
[ Leoafing
[ Forest

[ peveloped
[ Unclassified

Data Source: Landuse
coverage and attribute tahle
provided by WADCR 19339

3 Miles

Scale: 1110376
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Muddy Creek Nutrient TMDL
Source Assessment: Nitrogen Sources
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TMDL Modeling Tool: BASINS/HSPF

BASINS/HSPF:
Hydrologic Simulation

Drnn
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TMDL Model Input and Output

e |nput e Output
— weather data (NCDC)  — in-stream nitrate
— land use concentration time series
— stream network — pollutant loads (Ib/acre) in
(USEPA) each land use

— flow (USGYS)
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Constant Sources

Annual Nitrogen Loads

Cows in Stream
0.5% Fertilizer
5% Atmospheric
Deposition
8%
Septic Tanks

0.5% Manure (Beef,

Dairy, Sheep)
43%

\Point source
3%
Poultry Litter
41%

Annual Nitrogen Loads by Source in the Watershed
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TMDL Modeling: Water Quality Calibration

NO3-N at St. 4 (Rt. 737)
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+ Simulation Results
o DEQ Data
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TMDL Allocation Matrix of Feasible Scenarios
(Muddy Creek, VA)

Scenario | Point | Crop | Hay | Pastures | Loafing | Pesk Comments
Code | Source 2and3 | Lots | NOsN
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Uncertainty Analysis
M ethodology

 FOEA Procedures

— Step 1: determine the key variables

— Step 2: calculate the partia derivative using finite
difference methods

— Step 3: estimate the coefficient of variation of each
single variable

— Step 4: propagate overall variance of model output
— Step 5: conversion of output variance to MOS
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Step 1. Candidate List of Key Parameters

» Rainfall o Examples
— depth, duration, — Nitrification coeff.
intensity, interval — Denitrification coeff.
— Ammoniavolatilization
- COeff.
» Water Quantity — Adsorption coeff.
— Temperature coeff.

o Water Quality
(nitrogen cycle)
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Step 2. Calculate the Partial Derivative

C(X)

C(X+DX
C(X)
C(X-DX)

>

XDX X X+DX > x

— For complex
watershed moddl, it is
usually impossible to
obtain the analytical
solution

— The derivatives can
be determined
numerically using
Finite Difference
M ethod
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Step 3. Estimate Coefficient of Variation of Each
Variables
Summary of QUALZE Input Variable Uncertainties (Brown and Barnell, 1987)
Input Variable or Parameter Coefficient of Variation, %
Low Typical High
Algae, Nutrient, Light 5 10-20 50
Coefficient
Temperature Coefficient 1 2-5 10
Reaction Coefficient 5 10-25 100
Hydraulic Data 1 5-15 50
Concentration (N Forms) 10 15-30 75
Concentration (P Forms) 10 15-40 75
J
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f Step 4. Propagate Overall Variance of Output

[CV/(In-Stream Pollutant Concentration)]?
_ P 112 + 1 (PC(Xi)/C(Xi)) 12
= VOO oy )

_ P [CV(Xi)]z*[[(C(Xi+ X) - C(.Xi.- X)]/C(Xi)]2
. (2DXi/Xi)

The normalized sensitivity coefficients present
the percentage change in the output variable
resulting from one percent change in each input
variable.

D
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Step 5. Estimate Load-based Margin of Safety

« TMDL (in lbs)=WLA+LA+MOS (in Ibs)

Nitra{e Concentration (mg/L)
4

10.0 mg/L
9.5 mg/L
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Linking the concentration-based WQ target
with MOS (load term)

* WQS: 10 mg/L « WQS: 9.5 mg/L
e LC1=SWLA+SLA « LC2=SWLA +SLA
+ MOS

« MOS=LC1-LC2
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Converting Concentration-based MOS to
Load-based MOS

Concentration-based

MOS: 5% (9.5mg/L vs. 10 _

mg/L WQS) /

L oad-based MOS: 2.4% | & « //

(of TMDL inlbs) 2%

Thelar ger the MOSin terms oS e ofconcentaon ol

of concentration, the larger the
MOS term as the percentage
of TMDL load




Key Sources of Uncertainty for MOS

* Precipitation
— natural randomness
— temporal
— gpatial
— measurement error

L

(9
b

e Certain model
coefficients
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Evaluating Key Sources of Uncertainty:
Regional rainfall characteristics by USEPA (1986)

* Precipitation
— natural randomness
— temporal
— gpatial
— measurement error

o Variability of rainfall
depth
— single storm vs. long

term trend
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|sthe MOS Same for Different TMDL

Allocation Scenarios?

Scenario | Point | Crop | Hay | Pastures | Loafing Peak Comments
Code | Source 2and 3 Lots NOs-N
(L) | (mglL)
Most NPS Reduction
from Sep.-Dec.,
A 20 40 40 | 40 | 40 50 9.47 LL (Jan.-Dec.)
All NPS Reduction
B 30 40 40 | 0 | 40 40 9.50 from Sep.-Dec.
Most NPS Reduction
from Sep.-Dec.,
C 35 25 30 | 20| 20 50 9.46 LL (Jan.-Dec.)
All NPS Reduction
D 45 25 25 |1 01|30 50 9.45 from Sep.-Dec.
All NPS Reduction
E 50 25 25 | 25| 25 25 9.50 from Sep.-Dec.




Effect of different allocation scenarios on MOS

Five scenarios with same
water quality targets
— Different combination of
PS and NPS reductions

The one with higher
percentage of nonpoint
source load reduction
has higher MOS term

MOS / TMDL (%)
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f Summary of Using FOEA to Estimate MOS )

» Using FOEA to estimate the MOS is considered
as an improvement over the current EPA simple
implicit and explicit methods

— A relationship was established to convert
concentration-based M OS to |oad-based MOS

— Precipitation is by far the most dominant uncertainty
source

» Effect of different allocation scenarios on MOS
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Parameter ESTimation (PEST)

Paul Cocca, Ecology & Environment Inc.
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What is PEST?

Parameter ESTimation

« PEST is a model independent parameter
optimization program
— Can be used for ground and surface water hydrology,
geophysics, engineering and other studies (EPA)

« PEST minimizes a user-defined objective
function that quantifies the misfit between model
outputs and corresponding field measurements




Predictive Uncertainty in PEST

* PEST can also
assess predictive
uncertainty

— For a specific
model prediction,
identifies range of
prediction values
from all calibration
parameter sets that
meet a minimal
objective function
value
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Generic PEST Functionality

* Upper and lower bounds
on parameter estimates
— PEST only modifies
parameter values within

bounds defined by user’s
factor or relative limit values

— PEST function in WinHSPF
has pre-defined parameter
bounds, based on HSPF
parameter limits
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Tutorial;: PEST in WINHSPF

 Initial PEST Configuration

Input/select Data Set
Number (DSN) for
observed and simulated
streamflow in output file.
Click Run PEST button to
start.
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Modeled vs. Observed Streamflow

WinHSPF Default Parameters After Optimization with PEST Defaults
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Modeled vs. Observed Scatterplot

WinHSPF Default Parameters After Optimization with PEST Defaults
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Modeled vs. Observed Flow Duration

WinHSPF Default Parameters After Optimization with PEST Defaults
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Statistical Comparisons

WIinHSPF defaults versus
observed

PEST default optimized
versus observed
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Snapshot: Monte Carlo Simulation

- Bayesian Approach (Dr. Ken Reckhow, Duke University)
- GLUE Approach (Dr. Jennifer Benaman, QEA)
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Adaptive Implementation: Bayesian Analysis

Posterior (integrating modeling
/’“\and monitoring)

Sample
(monitoring

Prior (model forecast)
Data)

Water Quality Criterion Concentration




Density
0.3 04

0.2

0.1

0.0

— Prior
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""" 1993
== 1994

1995
== 1996

1997

1998
""" 1999
== 2000

log Chla Concentration




Bayesian Approach: GLUE

Generalized Likelihood Uncertainty
Estimation (GLUE)

Developed by Beven and Binley (1992),
University of Lancaster (UK)

Combines Monte-Carlo analysis with
Bayesian-type statistics to determine
uncertainty bounds on model calibration

Uses Likelihood Values — similar to
goodness-of-fit measures to ‘test’ model run
acceptability
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GLUE-LIkelihood Combination

* To apply GLUE, must
combine the GLUE
likelihoods for these
different output
variables

Need to consider model
performance in relation
to different output
variables
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Using the Results for
Management Evaluations
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Summary

* Rigorous Uncertainty Analysisis Important in
TMDL Allocation

o Uncertainty Analysis Methodologies/
Tools
— First-Order Error Analysis (FOEA)
— Parameter ESTimation (PEST) Tool
— Advanced Monte Carlo Simulation (MCYS)

e Path Forward




Questions?
Suggestions?

Thanks!

harry.zhang@ch2m.com
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