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Outline

• Introduction
– Why Rigorous Uncertainty Analysis is Important?

• Methodologies / Tools
– First-Order Error Analysis on MOS (Case Study:

Nutrient TMDL in Muddy Creek, Virginia)

– Parameter ESTimation (PEST) Tool
– Monte Carlo Simulation (MCS)

• Summary and Conclusions
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TMDL = SSSS WLAs  +  
SSSS LAs  + MOS
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Uncertainty in Water Quality Program

• “Scientific 
uncertainty is a 
working condition in 
all water quality 
programs, including 
TMDL” (NRC, 2001)

• “Models produce only an 
approximation of reality. 
Model predictions 
cannot be any better 
than the calibration and 
validation, and will 
always have some 
uncertainty associated 
with the output”
(USEPA, 1999)
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ASSESSING THE TMDL APPROACH TO
WATER QUALITY MANAGEMENT

Committee to Assess the Scientific Basis of the TMDL 
Approach to Water Pollution Reduction

National Research Council
National Academy Press

Washington, D.C.
2001

“ Uncertainty must be explicitly 
acknowledged both in the models 
selected to develop TMDLs and in the 
results generated by those models”
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EPA’s Approach to Estimating MOS

• Explicit: to reserve a 
portion of the TMDL 
(e.g. 10%)
– Advantages

• Easier for public 
to understand

– Disadvantages
• Difficult to 

explicitly define 
uncertainty

• Implicit: to use 
conservative model 
assumptions
– Advantages

• Easier to define

– Disadvantages
• Difficult for public 

to understand
• Provides uncertain 

degree of protection



7

Existing MOS Approaches (WERF)

• Review of State Programs
– Six of eight programs surveyed had no standardized 

procedure for defining the Margin of Safety

• Review of 172 Approved TMDLs
– 119 arbitrarily selected a MOS value (5-90%)
– 40 used an implicit approach
– 12 used no MOS at all
– 1 explicitly calculated the uncertainty / MOS through 

a research project
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Why Rigorous Uncertainty Analysis is Important?

• TMDL under tight 
schedule

• TMDL under limited 
budget

• Limited data
• Less rigorous method 
• Great uncertainty in 

“TMDL numbers”
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Revisit during TMDL Implementation and 
Adaptive Management

• Implementation 
implications of 
data poor/high 
uncertainty 
situations
– Restoration 

Cost
– Compliance 

Difficulty
– Uncertain 

about the path 
to success

30-Day Geometric Mean for Modeled Fecal Coliform Bacteria 
Muddy 1 Subw atershed (4028)
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Approaches to Incorporating a MOS
in TMDL Allocation
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Approaches to Incorporating a MOS

• EPA’s Explicit and Implicit Methods

• Uncertainty Analysis Methodologies
– Simple: Sensitivity Analysis 
– Intermediate: First-Order Error Analysis
– Advanced: Monte Carol Simulation
– Software Tool: PEST (Parameter Estimation 

Tool); QUAL2E
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First Order  Error  Analysis

• First Order Error Analysis (FOEA)
– Intermediate method (not overly complex; 

computational efficiency)
– providing relative significance of the 

contributing sources to overall uncertainty

• To demonstrate its application from  a real-
world TMDL
– First Nutrient TMDL in Virginia approved 

by EPA (Muddy Creek, VA)
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Muddy Creek: Land Use and Nitrogen Sources
• Land Use

– Forest 34%
– Row Crop 26%
– Pasture 30%
– Loafing Lot 1%
– Other 9%

• Nitrogen Sources
– Dairy Cows 
– Beef and unconfined cattle 
– Poultry litter
– Fertilizer
– Atmospheric deposition
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Muddy Creek Nutrient TMDL
Source Assessment: Nitrogen Sources
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TMDL Modeling Tool: BASINS/HSPF

• BASINS/HSPF: 
Hydrologic Simulation 
Program – FORTRAN
– Public domain
– One of the most 

comprehensive 
dynamic models

– Both watershed loading 
and receiving water 
body model

– Both continuous and 
event-based 
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TMDL Model Input and Output
• Input

– weather data (NCDC)
– land use 
– stream network 

(USEPA)
– flow (USGS)
– water quality (DEQ)
– Point Source 

(Discharger) 

• Output
– in-stream nitrate 

concentration time series
– pollutant loads (lb/acre) in 

each land use
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Annual Nitrogen Loads
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TMDL Modeling: Water Quality Calibration
NO3-N at St. 4 (Rt. 737) 
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TMDL Allocation Matrix of Feasible Scenarios 
(Muddy Creek, VA)

 
Scenario 

Code 
Point 

Source 
Crop Hay Pastures 

2 and 3 
Loafing 

Lots 
(LL) 

Peak  
NO3-N 
(mg/L) 

Comments  

 
 

A 20 40 40 

 
 

40 40 50 

 
 

9.47 

Most NPS Reduction 
from Sep.-Dec.,  
LL (Jan.-Dec.) 

 
B 30 40 40 

 
0 40 40 

 
9.50 

All NPS Reduction 
from Sep.-Dec. 

 
 

C 35 25 30 

 
 

20 20 50 

 
 

9.46 

Most NPS Reduction 
from Sep.-Dec.,  
LL (Jan.-Dec.) 

 
D 45 25 25 

 
0 30 50 

 
9.45 

All NPS Reduction 
from Sep.-Dec. 

 
E 50 25 25 

 
25 25 25 

 
9.50 

All NPS Reduction 
from Sep.-Dec.  
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Uncer tainty Analysis
Methodology

• FOEA Procedures
– Step 1: determine the key variables
– Step 2: calculate the partial derivative using finite 

difference methods
– Step 3: estimate the coefficient of variation of each 

single variable 
– Step 4: propagate overall variance of model output
– Step 5: conversion of output variance to MOS
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Step 1. Candidate List of Key Parameters

• Rainfall
– depth, duration, 

intensity, interval

• Water Quantity

• Water Quality 
(nitrogen cycle)

• Examples
– Nitrification coeff.
– Denitrification coeff.
– Ammonia volatilization 

coeff.
– Adsorption coeff. 
– Temperature coeff.
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Step 2. Calculate the Partial Derivative

– For complex 
watershed model, it is 
usually impossible to 
obtain the analytical 
solution

– The derivatives can 
be determined 
numerically using 
Finite Difference 
Method

                                 C(X) 

                          C(X+DX) 
                                C(X) 

                     C(X-DX)    

                                                                          X-DX   X    X+DX                         X 
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Step 3. Estimate Coefficient of Variation of Each 
Variables

Summary of QUAL2E Input Variable Uncertainties (Brown and Barnell, 1987)

Coefficient of Variation, %Input Variable or Parameter
Low Typical High

Algae, Nutrient, Light
Coefficient

5 10-20 50

Temperature Coefficient 1 2-5 10
Reaction Coefficient 5 10-25 100

Hydraulic Data 1 5-15 50
Concentration (N Forms) 10 15-30 75
Concentration (P Forms) 10 15-40 75
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Step 4.  Propagate Overall Variance of Output

[CV(In-Stream Pollutant Concentration)]2

= 2
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The normalized sensitivity coefficients present 
the percentage change in the output variable 
resulting from one percent change in each input 
variable.
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Step 5. Estimate Load-based Margin of Safety

• TMDL (in lbs)=WLA+LA+MOS (in lbs)
Nitrate Concentration (mg/L) 
 
 
 
                10.0 mg/L 
                                                            MOS (lb)                                                     9.5 mg/L
 
 
     SWLA+SLA(lb)   
 
 
 
 
 
 
 
 
 
      
 
 
 
 

            Time 
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Linking the concentration-based WQ target 
with MOS (load term)

• WQS: 10 mg/L

• LC1 = SWLA + SLA 
+ MOS 

• MOS = LC1- LC2

• WQS: 9.5 mg/L

• LC2 = SWLA + SLA 
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Converting Concentration-based MOS to 
Load-based MOS

• Concentration-based 
MOS: 5% (9.5 mg/L vs. 10 
mg/L WQS)

• Load-based MOS: 2.4% 
(of TMDL in lbs)

• The larger the MOS in terms 
of concentration, the larger the 
MOS term as the percentage 
of TMDL load
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Key Sources of Uncertainty for MOS

• Precipitation
– natural randomness
– temporal
– spatial
– measurement error

• Certain model 
coefficients
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Evaluating Key Sources of Uncertainty:
Regional rainfall characteristics by USEPA (1986)

• Precipitation
– natural randomness
– temporal
– spatial
– measurement error

• Variability of rainfall 
depth 
– single storm vs. long 

term trend
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Is the MOS Same for Different TMDL 
Allocation Scenarios?

 
Scenario 

Code 
Point 

Source 
Crop Hay Pastures 

2 and 3 
Loafing 

Lots 
(LL) 

Peak  
NO3-N 
(mg/L) 

Comments  

 
 

A 20 40 40 

 
 

40 40 50 

 
 

9.47 

Most NPS Reduction 
from Sep.-Dec.,  
LL (Jan.-Dec.) 

 
B 30 40 40 

 
0 40 40 

 
9.50 

All NPS Reduction 
from Sep.-Dec. 

 
 

C 35 25 30 

 
 

20 20 50 

 
 

9.46 

Most NPS Reduction 
from Sep.-Dec.,  
LL (Jan.-Dec.) 

 
D 45 25 25 

 
0 30 50 

 
9.45 

All NPS Reduction 
from Sep.-Dec. 

 
E 50 25 25 

 
25 25 25 

 
9.50 

All NPS Reduction 
from Sep.-Dec.  
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Effect of different allocation scenarios on MOS

• Five scenarios with same 
water quality targets
– Different combination of 

PS and NPS reductions

• The one with higher 
percentage of nonpoint 
source load reduction 
has higher MOS term
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Summary of Using FOEA to Estimate MOS

• Using FOEA to estimate the MOS is considered 
as an improvement over the current EPA simple 
implicit and explicit methods
– A relationship was established to convert 

concentration-based MOS to load-based MOS 
– Precipitation is by far the most dominant uncertainty 

source

• Effect of different allocation scenarios on MOS
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Parameter  ESTimation (PEST)

Paul Cocca, Ecology & Environment Inc.
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What is PEST?

• PEST is a model independent parameter 
optimization program
– Can be used for ground and surface water hydrology, 

geophysics, engineering and other studies (EPA)

• PEST minimizes a user-defined objective 
function that quantifies the misfit between model 
outputs and corresponding field measurements

Parameter ESTimation
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Predictive Uncertainty in PEST
• PEST can also 

assess predictive 
uncertainty
– For a specific 

model prediction, 
identifies range of 
prediction values 
from all calibration 
parameter sets that 
meet a minimal 
objective function 
value
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Generic PEST Functionality
• Upper and lower bounds 

on parameter estimates
– PEST only modifies 

parameter values within 
bounds defined by user’s 
factor or relative limit values

– PEST function in WinHSPF 
has pre-defined parameter 
bounds, based on HSPF 
parameter limits
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Tutorial: PEST in WinHSPF

• Initial PEST Configuration

Input/select Data Set 
Number (DSN) for 
observed and simulated 
streamflow in output file. 
Click Run PEST button to 
start.
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Modeled vs. Observed Streamflow

WinHSPF Default Parameters After Optimization with PEST Defaults
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Modeled vs. Observed Scatterplot

WinHSPF Default Parameters After Optimization with PEST Defaults
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Modeled vs. Observed Flow Duration

WinHSPF Default Parameters After Optimization with PEST Defaults
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Statistical Comparisons

� WinHSPF defaults versus 
observed

� PEST default optimized 
versus observed
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Snapshot: Monte Car lo Simulation

- Bayesian Approach (Dr. Ken Reckhow, Duke University)

- GLUE Approach (Dr. Jennifer Benaman, QEA)
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Prior (model forecast)

Sample
(monitoring
Data)

Posterior (integrating modeling
and monitoring)

Adaptive Implementation: Bayesian Analysis

Water Quality Criterion Concentration
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Bayesian Approach: GLUE
• Generalized Likelihood Uncertainty 

Estimation (GLUE)
• Developed by Beven and Binley (1992), 

University of Lancaster (UK)
• Combines Monte-Carlo analysis with 

Bayesian-type statistics to determine 
uncertainty bounds on model calibration

• Uses Likelihood Values – similar to 
goodness-of-fit measures to ‘test’ model run 
acceptability



46

GLUE-Likelihood Combination
• To apply GLUE, must 

combine the GLUE 
likelihoods for these 
different output 
variables

• Need to consider model 
performance in relation 
to different output 
variables

#S

#S

%

%

Sediment Load at Beerston

Flow at Walton

Sediment Load at
Town Brook

Flow at Town Brook
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Using the Results for  
Management Evaluations
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Summary

• Rigorous Uncertainty Analysis is Important in 
TMDL Allocation 

• Uncertainty Analysis Methodologies / 
Tools
– First-Order Error Analysis (FOEA)
– Parameter ESTimation (PEST) Tool
– Advanced Monte Carlo Simulation (MCS)

• Path Forward
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Questions?
Suggestions?

Thanks!

harry.zhang@ch2m.com
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