Data Management Tool Facilitates Long Term Flow Reduction

2020

Catherine Morley, PE Zach Matyja, PE

Engineeting infrastructure for tomorrow

History

- City just under 50,000
- 143 miles sewer (many formerly combined)
- ADF 4.24 mgd 1-year 60 min storm 70 mgd
- 1987 Consent Order Comprehensive I/I Reduction
- 36 Permitted Overflows
- 40% Homes Foundation Drains
- Removed 60% excess flow

2010 Storms

- June 23, 2010 10-YEAR STORM EVENT
- July 23, 2010 -100-YEAR STORM EVENT
- City inundated
- Overland flooding
- Hundreds basement backups - mainly south

Sanitary System - 2012

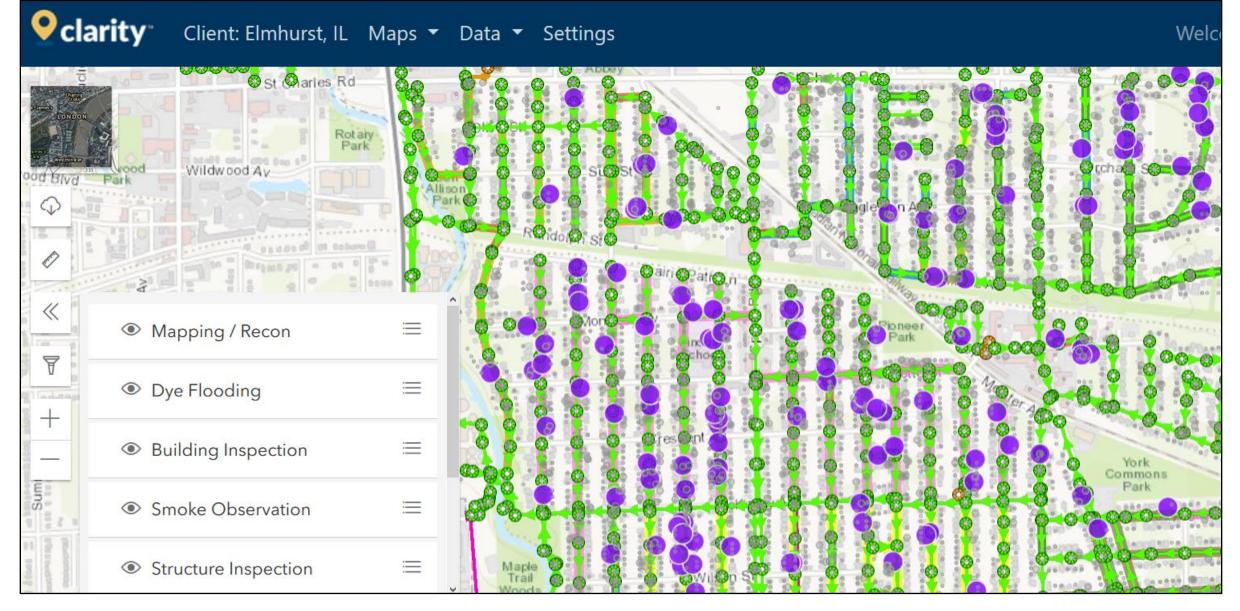
- 12 permitted emergency sewer overflows (ESOs)
- Majority sump pumps removed
- Foundation Drains remaining
- ADF 3.9 mgd
- 1-year 60-minute storm 54 mgd

Consent Order Investigations

- Smoke testing all basins in south
- Manhole inspections
- Building inspections
- Dye flooding of smoking storm structures
- Dye Testing area drains and driveway drains

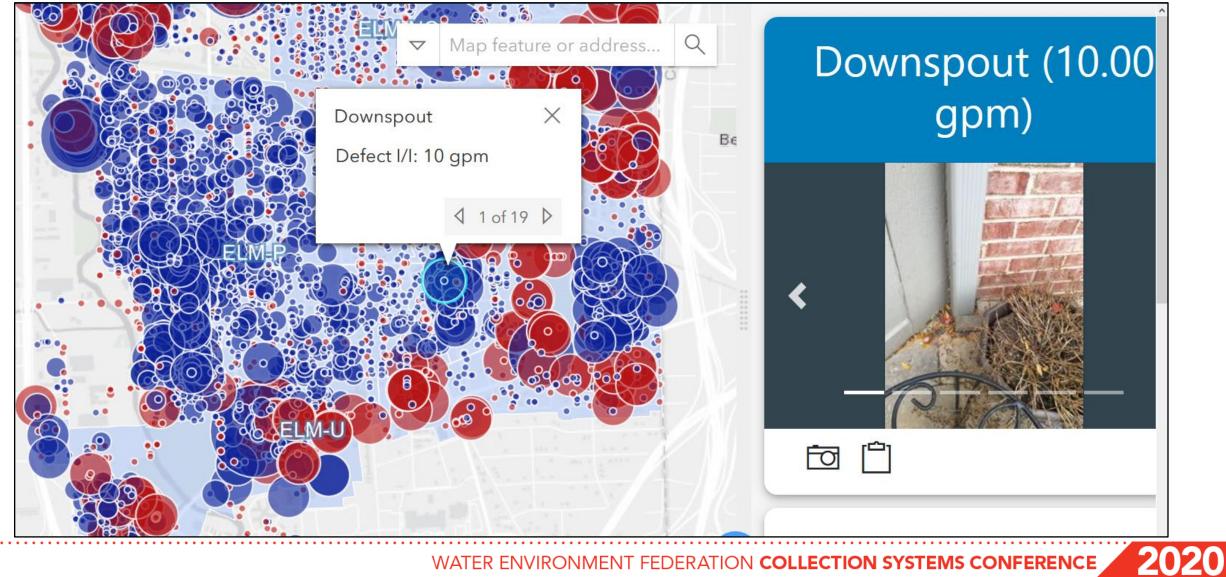
Consent Order Rehabilitation

- Mainline Lining
- Manhole Rehabilitation
- Remaining Sump Pump Disconnection
- Area Drain removal
- Lateral Rehabilitation lining replacement
- 5 Permanent Flow Meters


Data Management

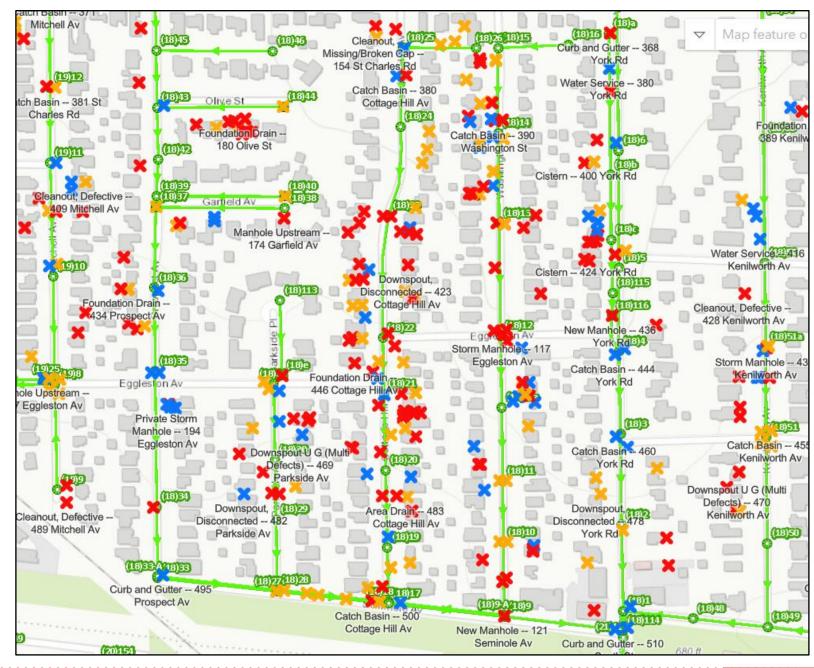
- Vast Quantities of Data
- Easily Accessible
- Ability to Query and Filter
- Granular Level
- Tool for Engineering and Public Works
- Flow Monitoring Integration

3,000⁺ Building Inspections 500,000 ft of Smoke Testing 3,500⁺ Manhole Inspections 900 Laterals Televised 3,000⁺ Smoke Defects

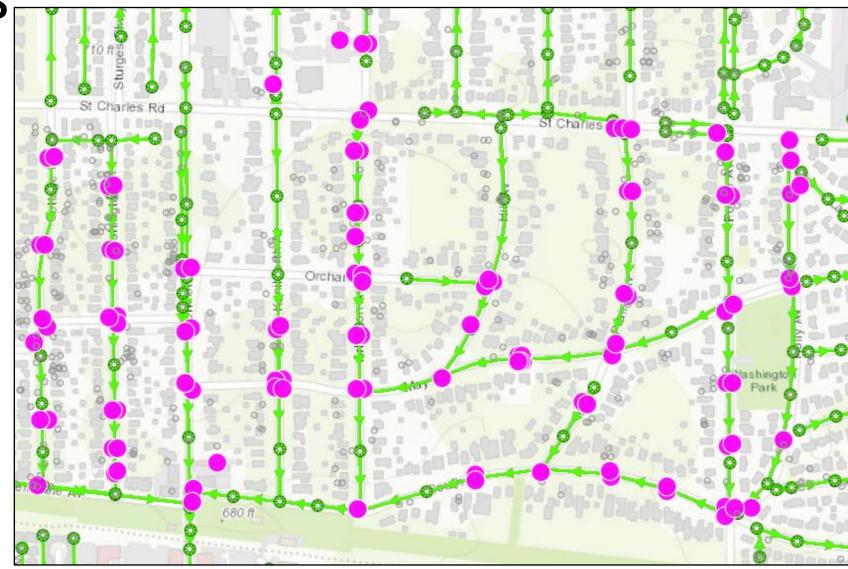

Poll Question

- How do you access SSES inspection data?
 - Paper/pdf reports and maps
 - GIS
 - Online data platform
 - Other

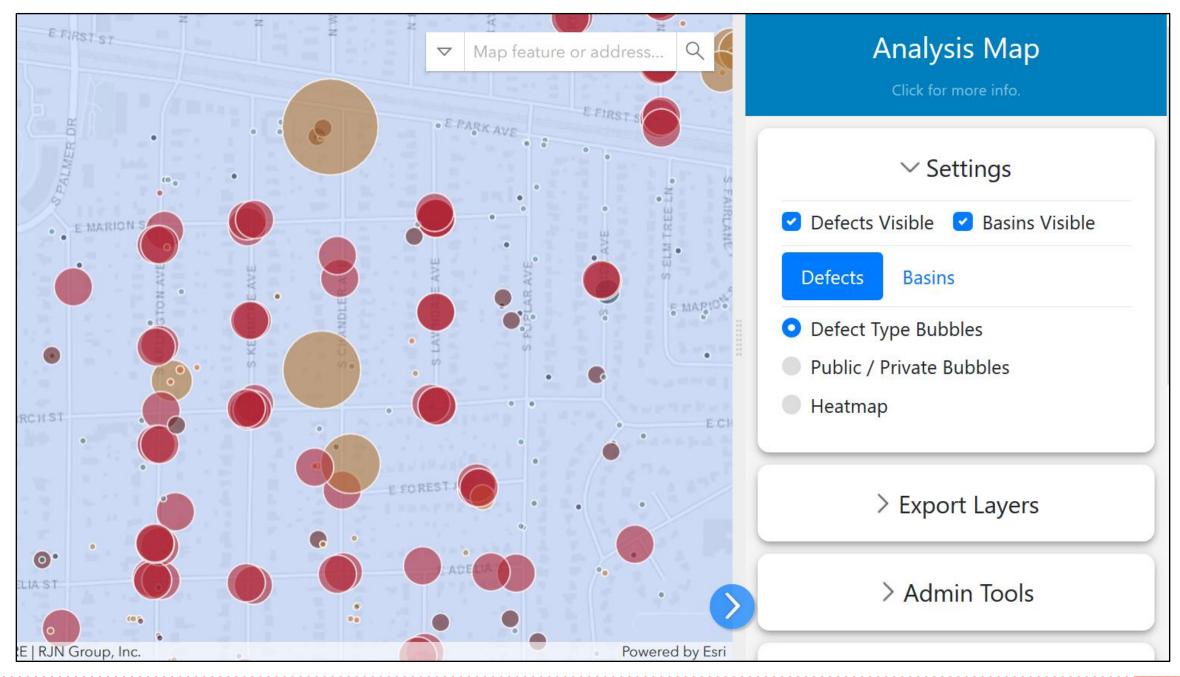
Public/Private



Heat Maps


WATER ENVIRONMENT FEDERATION COLLECTION SYSTEMS CONFERENCE

Detailed Data

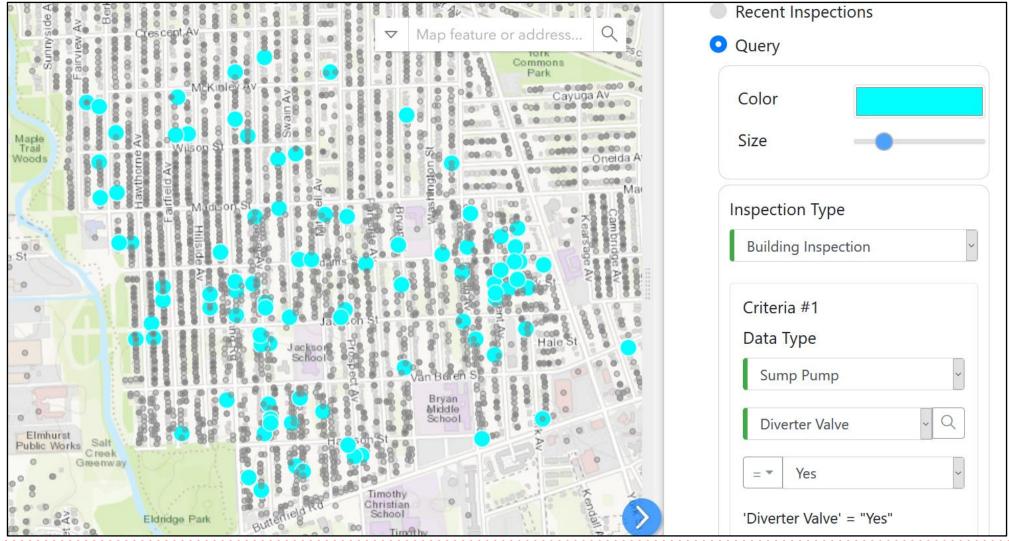


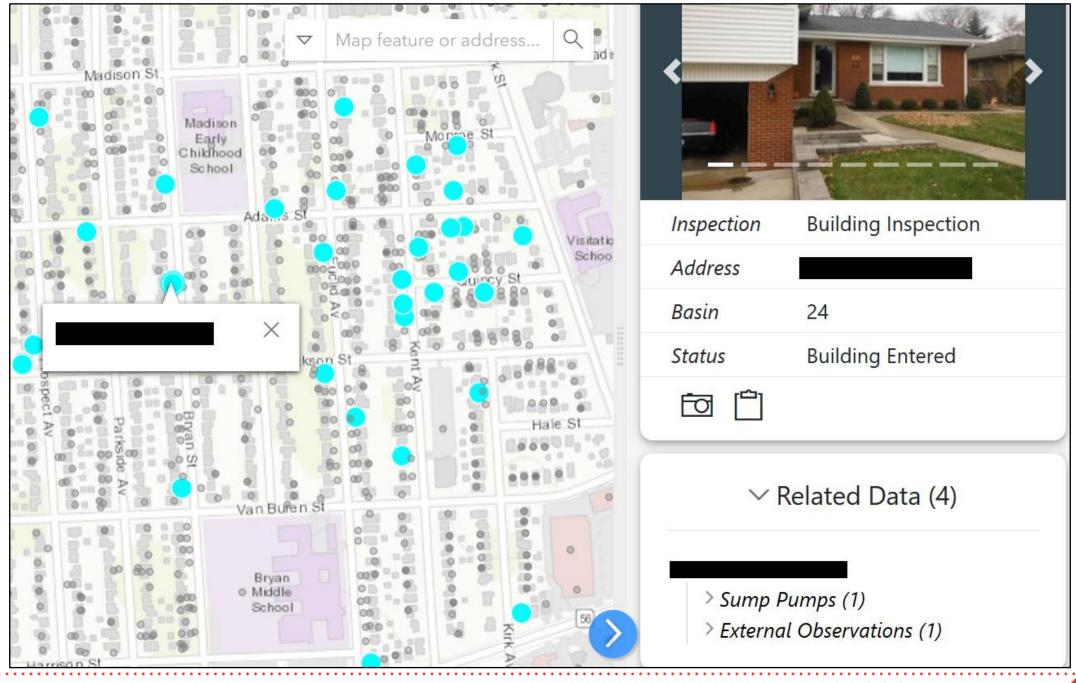
WATER ENVIRONMENT FEDERATION COLLECTION SYSTEMS CONFERENCE

Catch Basins



WATER ENVIRONMENT FEDERATION COLLECTION SYSTEMS CONFERENCE





Building Diverter Valves

WATER ENVIRONMENT FEDERATION COLLECTION SYSTEMS CONFERENCE

Qclarity

lounty of DuPage, I

Data Sheet Viewer

Print 🗋 New Tab

Building Type Foundation Type **Previous Flooding** Sanitary Pipe Discharge Has Stand Pipe Lot Drainage Adequate Has Flood Control **Basement Grade Basement Length Basement Width**

Residential
Partial Basement
No

Above Basement Floor

No Yes

> No 7 ft 23 ft 22 ft

Sump Pump: Storm Sump

No

Sump Info

Sink

Sump Pump Type Cover Type Check Valve Diverter Valve Sealed Bottom No Services

Storm
Loose
Yes
Yes
Unknown
No

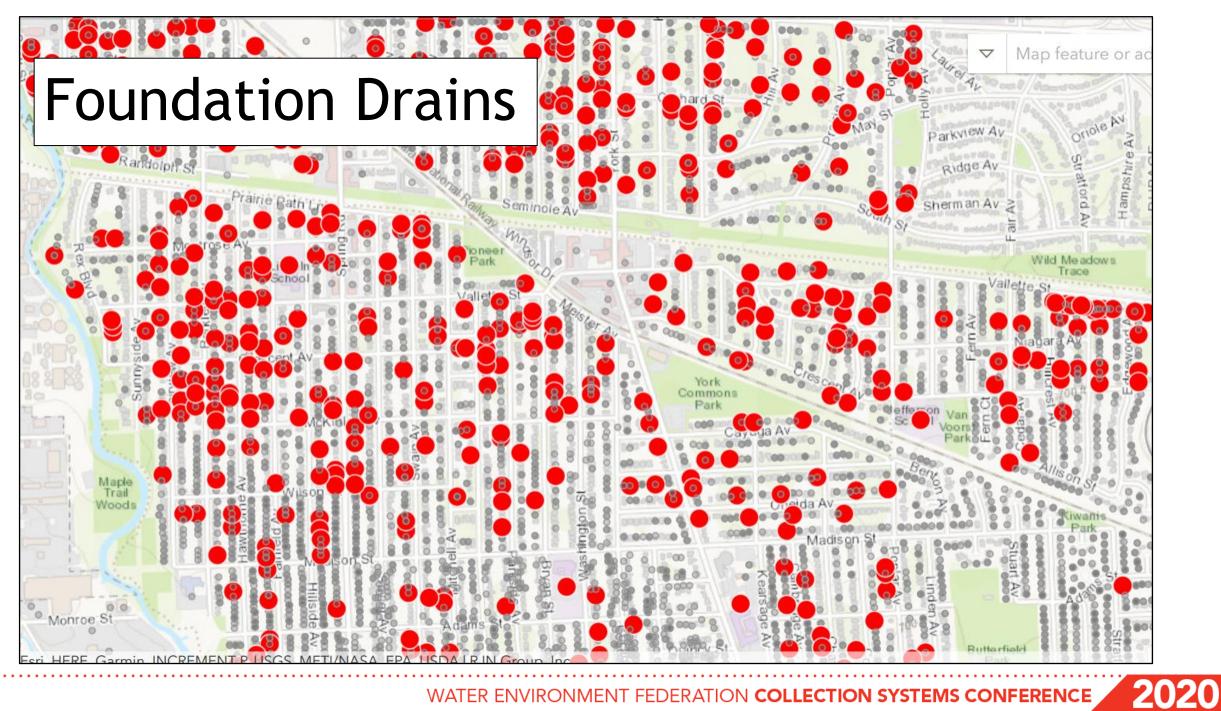
Discharge - Storm Sump

Pipes - Storm Sump

WATER ENVIRONMENT FEDERATION COLLECTION SYSTEMS CONFERENCE

ection

ST

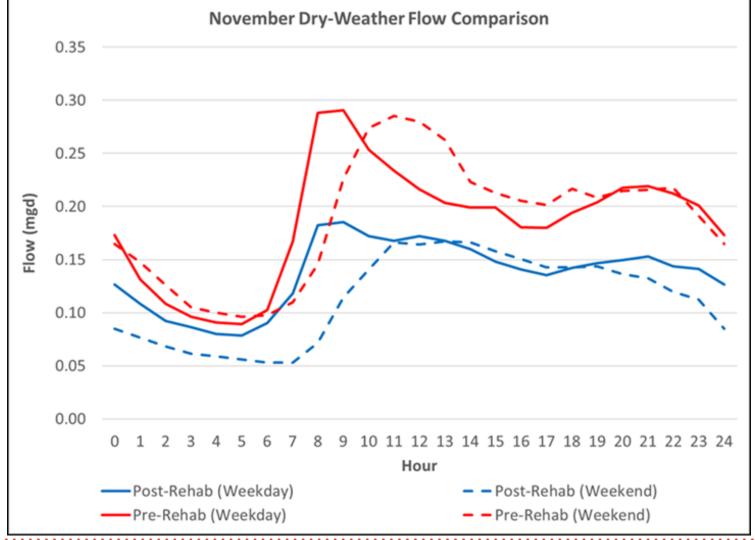

ered

(4)

(1)

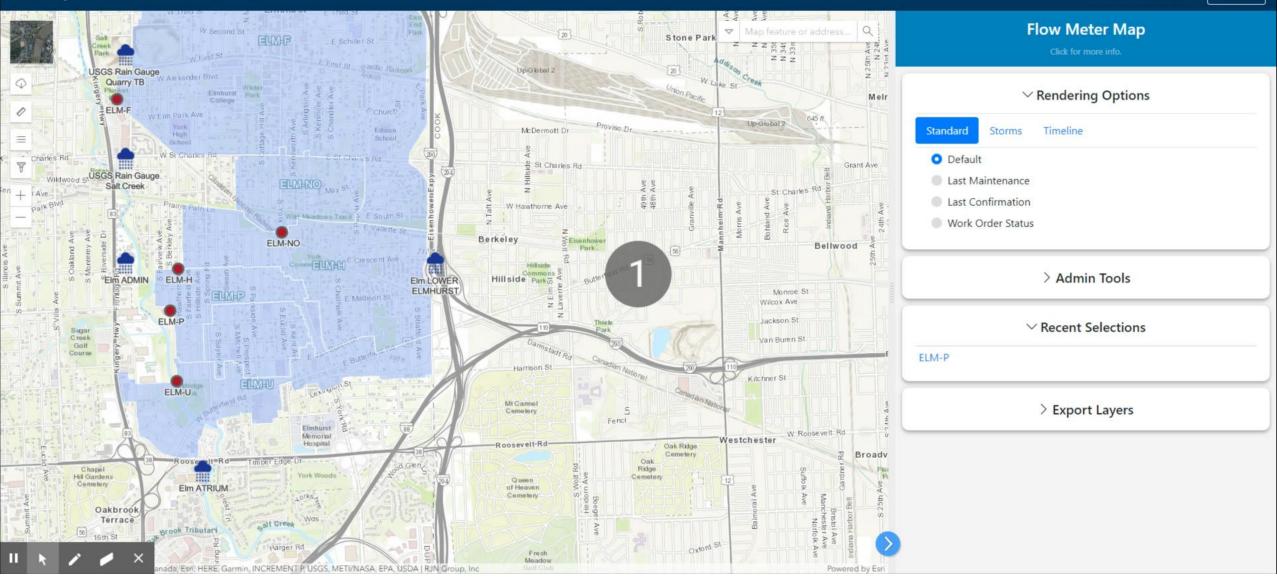
×

Sign C

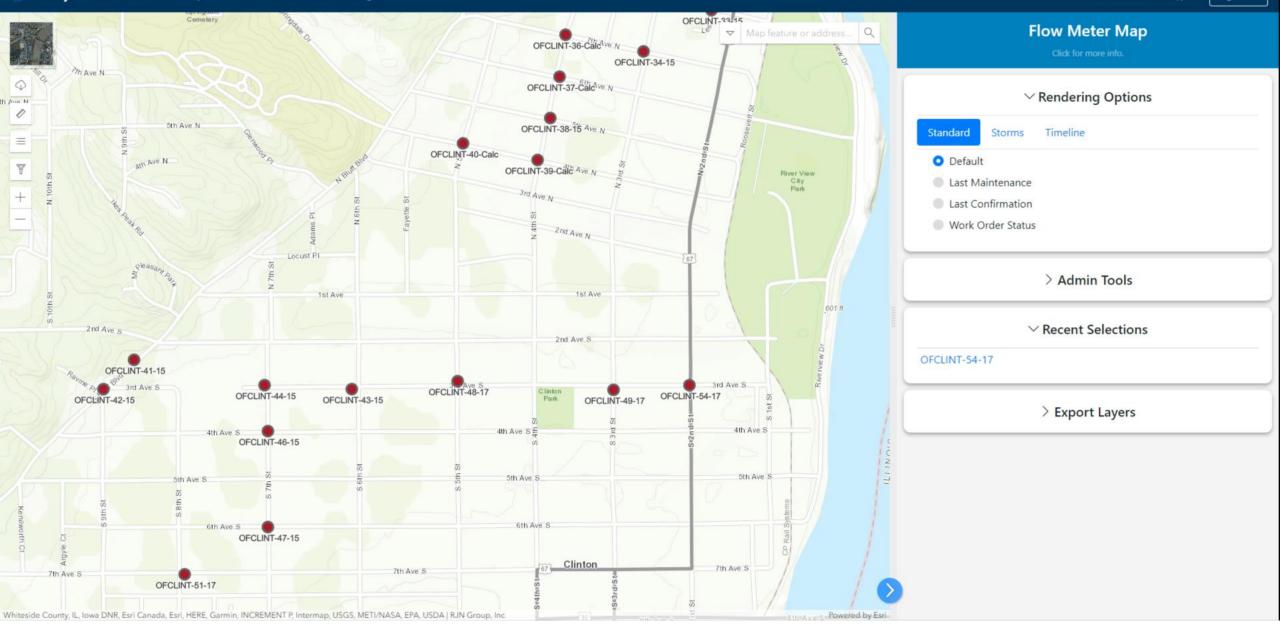

Poll Question

- How do you access flow monitoring data?
 - Paper/pdf reports
 - SCADA
 - Online data platform
 - Other

Flow Monitoring


- Gain a long-term understanding of system
- Monitor downstream control
- Long-term analysis of Pilot Basin "N-O"

Basin "N-O" Dry-Weather Flow Analysis


Settings

Welcome Zach Matyja Sign Out

Settings

2020

Conclusions/Wrap-up

- City is making progress on flow reduction
- Online platform has made it easy for all levels in the City to view data
- Future efforts including completed rehabilitation layer and overflow alarming will increase value to the City

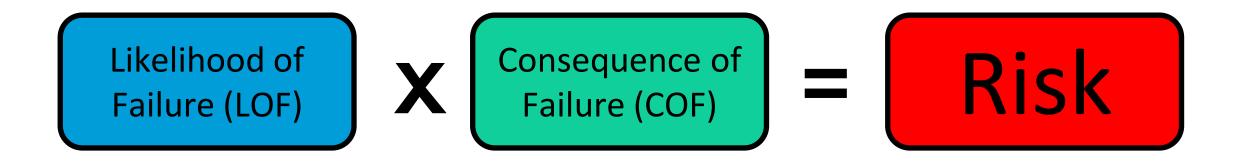
Questions?

2020

Catherine Morley, PE - <u>cmorley@rjnmail.com</u> Zach Matyja, PE - <u>zmatyja@rjnmail.com</u>

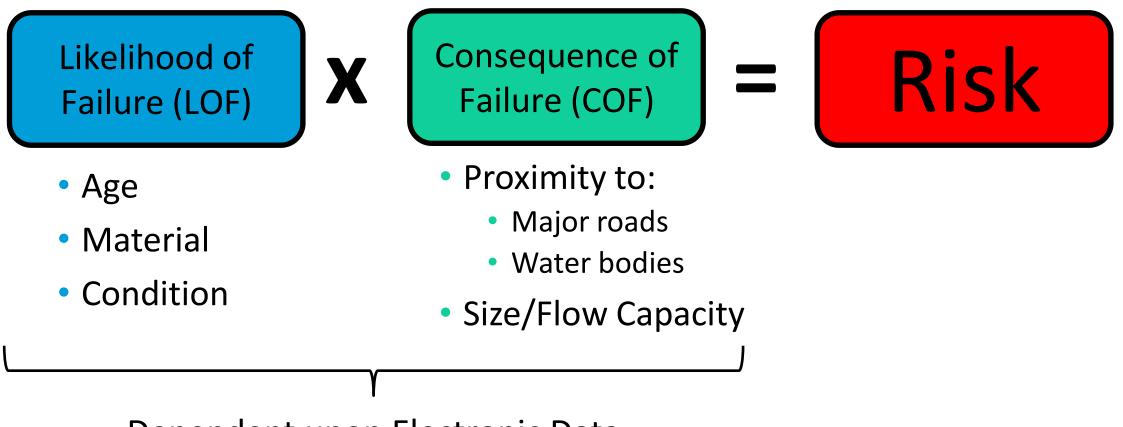
Engineeting infrastructure for tomorrow

FROM FEAST TO FAMINE


2020

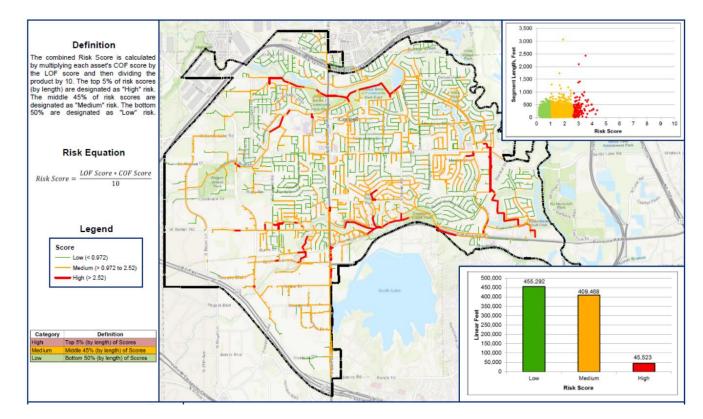
Adapting Your Asset Management Plan based on Data Availability

Ellen McDonald, PhD, PE Reza Malek, PhD

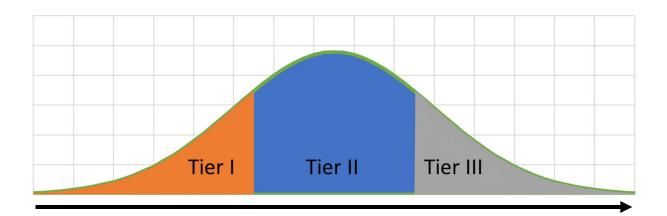


"Asset management is the practice of managing infrastructure capital assets to minimize the total cost of owning and operating them, while delivering the service level customers desire." - USEPA

Calculation of Risk is Data-Dependent


Dependent upon Electronic Data

Risk Prioritization Provides Process for Spending \$\$ Where Needed Most


Example Results

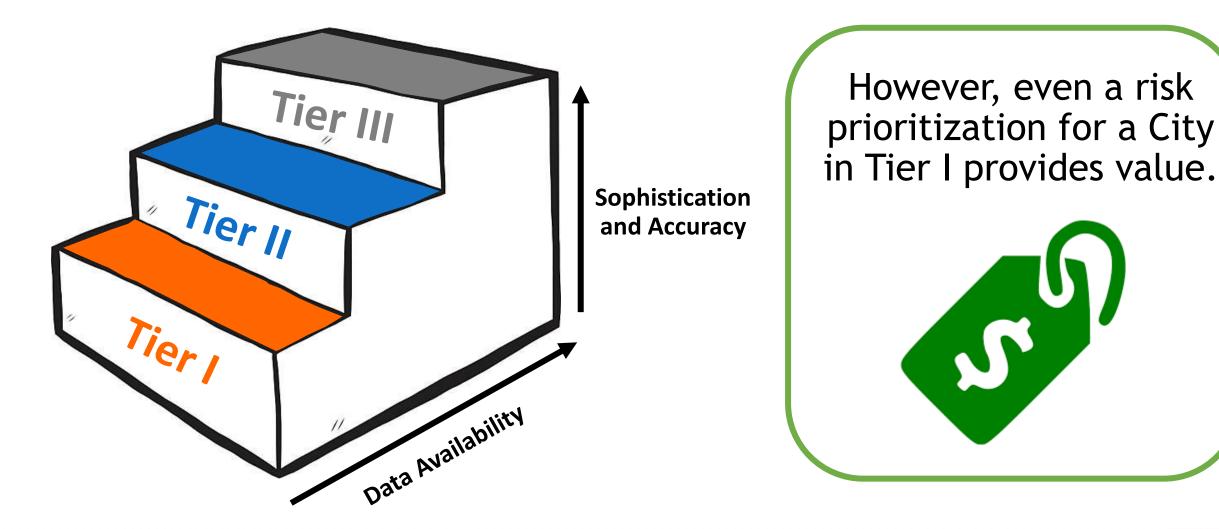
Inspection Year	Risk Rank ¹	Total Footage (LF)	Manhole Inspections (Approx. #)	Opinion of Probable Cost ²	High Risk Assets Inspected (%)	Medium Risk Assets Inspected (%)
2020	1 to 134	45,553	139	\$283,000	100%	-
2021	135 to 303	45,308	164	\$285,000	-	11%
2022	304 to 447	45,591	130	\$282,000	-	11%
2023	448 to 614	45,541	143	\$283,000		11%
2024	615 to 791	45,530	153	\$285,000	-	11%
2025	792 to 1,000	45,352	177	\$287,000	-	11%
2026	1,001 to 1,193	45,518	146	\$284,000	-	11%
2027	1,194 to 1,383	45,526	149	\$284,000	2 J	11%
2028	1,384 to 1,593	45,521	143	\$283,000		11%
2029	1,594 to 1,782	45,563	128	\$281,000	-	11%
أمريح والالتحدي	TOTAL	455,005	1,472	\$2,837,000	100%	100%

Data Availability is Classified for Illustration

Data Availability

Tier	Georeferenced Location	Attributes ¹	Condition Scores
I	Maybe	<50%	No
П	Yes	>50%	No
	Yes	>90%	Yes
	res	>90%	res

¹ Includes diameter, age, and material

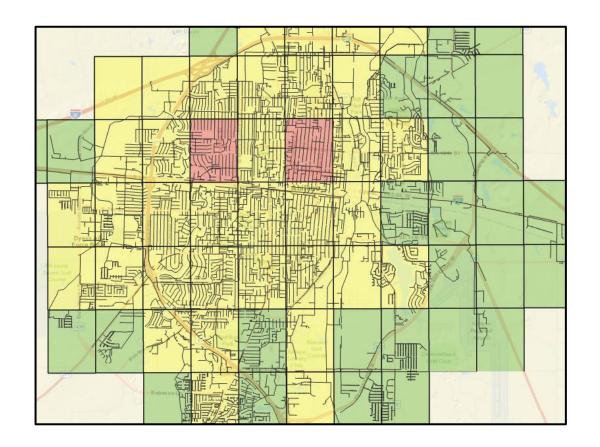


Poll Question

If you represent a wastewater service provider, what Tier category do you fall in?

- a. Tier I
- b. Tier II
- c. Tier III

Data Availability can Impact the Accuracy of Risk Estimates


Case Study #1 and #2 Comparison

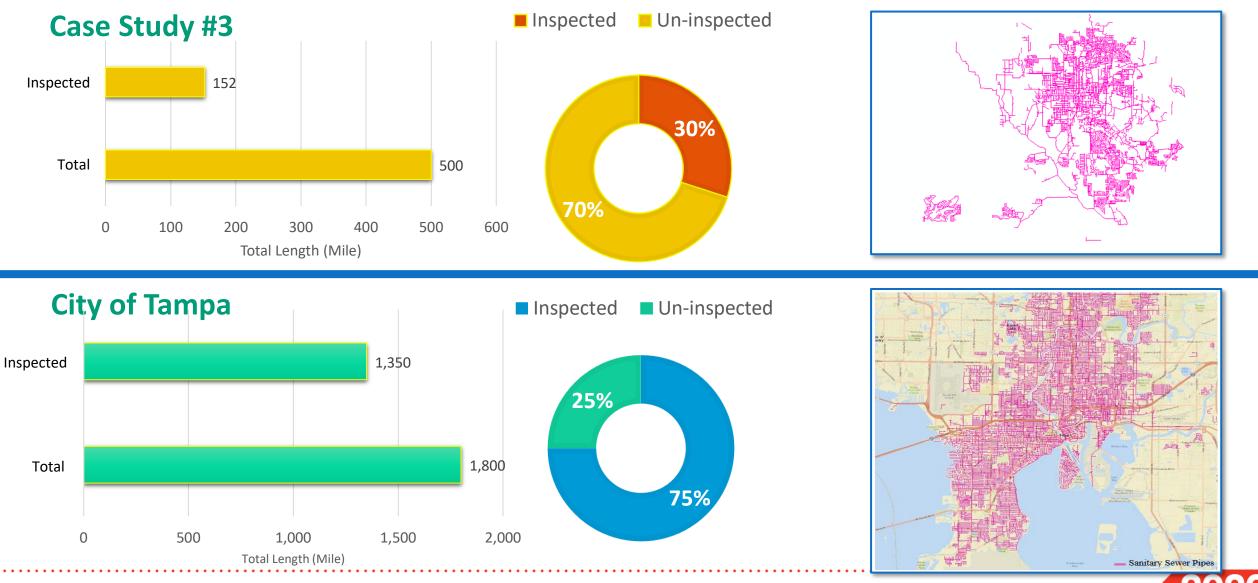
	Case Study #1	Case Study #2
Location	West Texas	DFW Metroplex
Population	>100,000	<50,000
Collection System	700 miles	220 miles
Georeferenced Location	Some	Yes
Pipeline Diameter	90%	100%
Pipeline Material	90%	100%
Pipeline Age	0%	100%
Condition Scores	No	No
Data Availability	Tier I	Tier II

Surrogate Data Were Used to Fill in Missing Age and Condition Data

- Age Initially assigned based on development date of closest land parcel. Refined to match timeframe in which pipe material was typically installed.
 - Example: Asbestos Concrete Pipe installed between 1940 and 1970.
- Condition Staff knowledge capture workshop scoring by grid

Case Study #3 Included Some PACP Condition Scores

	Case Study #3
Location	DFW Metroplex
Population	>100,000
Collection System	500 miles
Georeferenced Location	Yes
Pipeline Diameter	100%
Pipeline Material	100%
Pipeline Age	100%
Condition Scores	30%
Data Availability	Tier III


For cities in Tier III, more sophisticated models can be used to predict the condition of pipes that have not been inspected.

Statistical Models/Machine Learning can be Used to Predict Condition in Assets without Scores

PACP		Condition 1		Sewer Inver	ntory (CCTV Inspec	ction Data)
CCTV inspection				Physical	Environmental	Operational
N/ Jordo		Condition 2		Age	Soil type	Debris
7 e efect	A M			Material	Water table	Blockage
ck rat		Condition 3		Diameter	Corrosivity	Flow
s nent gra				Length	Moisture	Cleaning
SCL	THE COMPANY	Condition 4		Depth	рН	Overflow
Overall pipe rating				Slope	Bedding	Sediment
Condition As	sessment	Condition 5		Pr		

Even in Tier 3, Data Availability Varies

Available Variables can Impact Results

y #3
Stud
Case

Variables	Туре
Age	Numerical
Material	Categorical
Diameter	Numerical
Segment Length	Numerical
Paved	Categorical
Blockage	Numerical
H ₂ S	Categorical
Soil Type	Categorical
Connection	Numerical
RootCount	Numerical

City of Tampa

Variables	Туре
Age	Numerical
Material	Categorical
Diameter	Numerical
Depth	Numerical
Slope	Numerical
Length	Numerical
Soil Type	Categorical
Water Table	Numerical
Soil pH	Numerical
Soil Sulfate	Numerical
Pipe Flow	Numerical

Condition Spectrum Provides Insights

Case Study #3

Condition 19,766 pipe segments Percentage Condition Percentage • 2,587 pipe segments • 1 52.3 54.4 1 2 15 2 11.9 25 3 4.9 3 16.9 4 8 13.2 4 5 19.8 5 3.6 20 12.5 Frequency Percent 10.0 Frequency Percent 7.5 10 Overall 5.0 Score Condition 5 Rating 2 3 2.5 2 4 3 5 4 5 0 0.0 25 50 75 100 125 0 0 10 20 30 40 50 60 70 Age Group Age

City of Tampa

Model Accuracy Improves with More Data

- Pipes were categorized into two groups of Poor and Good pipes.
- Logistic regression was used to build the model.
- 80% data for training and 20% for test.

Case Study #3

Binary Logistic Regression Classification Table

Observed	Predi	Percent	
Observed	0	1	Correct Predicted
0	170	51	77%
1	98	102	51%
Overall Percentage			64%

City of Tampa

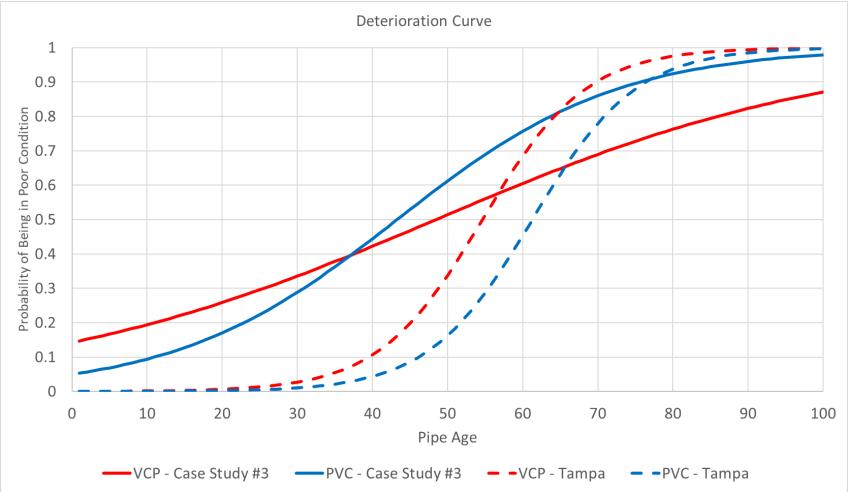
Binary Logistic Regression Classification Table

Observed	Predi	Percent	
Observed	0	1	Correct Predicted
0	2,542	315	89%
1	300	824	73%
Overall Percentage			84%

Significant Variables can be Identified from the Model

Case Study #3

Significant Variables


	Rank	Variables
ant es	1	Age
Significant Variables	2	Length
Sig Va	3	Blockage
	4	Diameter

City of Tampa

Significant Variables

es	Rank	Variables
Significant Variables	1	Age
t Var	2	Diameter
cant	3	Length
gnifi	4	Water Table
Si	5	Material

Reliability of Deterioration Curves Depends on Data Availability and Accuracy

THANK YOU!!

2020

Ellen McDonald, PhD, PE | <u>emcdonald@plummer.com</u> Reza Malek, PhD | <u>rmalek@plummer.com</u>

Poll Question

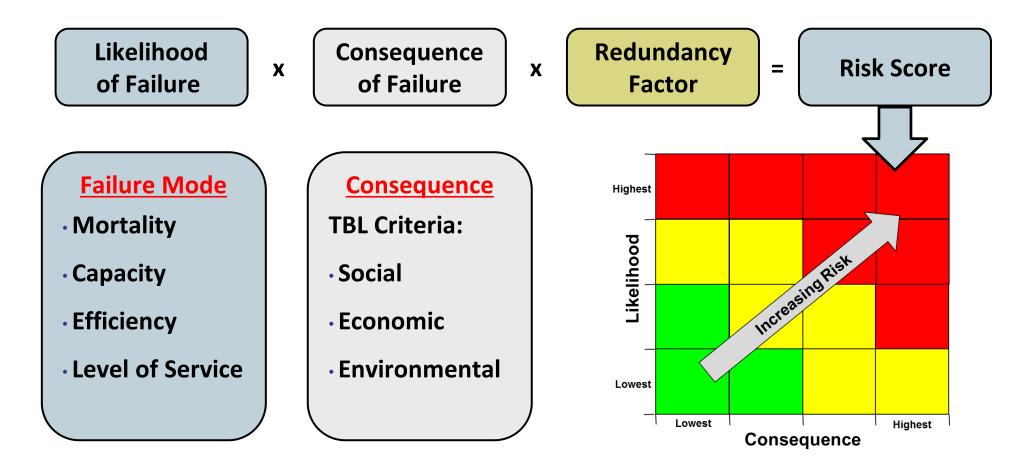
Does your organization have a process to assess condition of pipelines and record the condition scores?

a. No

- b. The condition of pipes is assessed based on staff knowledge
- c. The condition of pipes is assessed based on pipe age, material and other physical attributes
- d. The condition of pipes is assessed using CCTV or other advanced assessment tools

Powerful Asset Data Analytics to Support Utility Decision Making

Celine Hyer, PE, IAM


2020

Today's Agenda

- Introduction to Risk Based Capital Planning
 - Data Challenges
 - BI Tools and Benefits
- Case Study Lift Station Replacement Planning
 - Methodology Overview
 - Demonstration of Power BI Dashboards
 - Results & Lessons Learned
- Questions

A Comprehensive Risk Framework is Data Intensive for Asset Risk Scoring

Long-Term Planning Decisions Require More Data on Remaining Useful Life and Life Cycle Costs

- Install Date
- Effective Useful Life
- Replacement Cost
- Repair/Rehabilitation Cost
- Maintenance History
- Adjusted Useful Life
- Remaining Useful Life

Data is Typically Collected in Multiple Ways but Needs to Merge Together

Field Visual Assessment

Data Requirements	Collection Method	Assessment Method
Basic Asset Attributes (install date, capacity)	Tablets	Field Visual Assessment and CMMS
Physical Condition	Tablets	Field Visual Assessment
Performance Condition	Spreadsheet	Interviews and CMMS Reviews
Consequence of Failure	Spreadsheet	Interviews and Document Reviews
Effective Useful Life by Asset Type	Spreadsheet	Interviews
Life Cycle Costs	Spreadsheet	Review of Bid Tabs, CMMS, Engineering Estimates

Office Interviews and Data Reviews

Capital Decision Making Requires Multiple Spreadsheets and is Time Consuming

	lsset Asset Class Number		Location Description		Remaining Useful Life (Years)	Physical Performance Condition	COF	Reason	R	leason 2							
echanical U Ve		PUMP, VERTICAL, FLOV	Asset Group Asset Class	Asset Number		Location Description		U	emaining seful Life (Years)	Physical Condition	Performan ce COF	Reason		Reason 2			
chanical U		PUMP, VERTICAL, FLO	Valve Butterfly Valves	5711		VALVE, BUTTERFLY, PMP 3, ISO)		0	5		Valve leakage					
Ve	ertical		Valve Butterfly Valves	5714		VALVE, BUTTERFLY, PMP 6, ISO)		14	5		Valve leakage		_	_		
hanical V			Mechanical Pump Units Vertical	5377	PUMP, VE	ERTICAL, FLOWSERVE, 03WE001	17, PMP 3		7	4		Pump efficiency					
chanical	Asset Group	^{As} Asset Group	Mechanical Pump Units Vertical	5379	PUMP,VE	ERTICAL, FLOWSERVE, 00KN075	58, PMP 5		5	4		Pump efficiency					
chanical Sc			HVAC Air Handling Units	6269	HV Asset	Asset Asset				_			Remainin		al	_	
chanical Sc S	Mechanical	Pu	Electrical Air Handling Units	5280	Group	Class Number			Locati	on Desc	ription		Useful Lif (Years)	e Conditio		Reason	
chanical Sc S		Mechanical	Electrical Flow Meters- McCrometer	8616	Valve ^I	2 566 3	VALVE,BUT	TERFLY, #	4 DIS,R		DNEY HUNT,	V030546A, 416-	8	4			
IVAC Ha	Mechanical	Ρι	Electrical Flow Meters- McCrometer	8617	Value	Valves 5663 Butterfly 5664	VALVE, BUT	TERFLY, #	5 DIS,R	6, 42" C3H, RC	DNEY HUNT,	V030546A, 516-	0		Va	alve leakage	
VAC Ha		Mechanical	Electrical Flow Meters- McCrometer	8618	valve	Valves 5664				3, 42"		V030546A, 616-	8	4	Va	alve leakage	
- (Mechanical	Ρι	Floot Meters-		Valve	Va	∆sset	Asset					Ē	Remaining U	Jsefu	l COF	
IVAC ^{E)}	meenamear	Ho	Electrical McCrometer	8619	Valve I	Butt Asset Group	Class	Number	r		Location I	Description		ife (Years)		Score	Reason
L1	Electrical	_{Sv} Mechanical	Electrical Flow Meters- McCrometer	8620		Va Butt Mechanical	Scrubber System	2890		PU	MP,HORIZOI	NTAL, SCRUBBER		11		4	Health & Safety
IVAC C	Electrical	Ac Electrical	Electrical Flow Meters- McCrometer	8621	Valve	Va Pu Mechanical	Scrubber System	5384	PUMP	,HORZ	ONTL,FYBRO	C,#004380,SCRI	JBBER RC1	-2		4	Health & Safety
	Electrical	Ac	Electrical Chemical Transmitters	8881 XMIT	_{TER,} Mechanical	Ur Horiz Mechanical	Scrubber	5385		F	,	NTL,FYBROC,		-2		4	Health & Safety
ectrical St	Electrical	Electrical	Chemical Electrical Transmitters	8889	con Mechanical ,	Actuators 0007	System		0000-17	5 105	#004381,SC	RUBBER RC1	50		ot	perability	
ocess	Process	Electrical	Chemical Electrical Transmitters	8352 AM	MONIA GAS, SENSIDYNE	E, SENSALERT PLUS SENSOR IN T	ERFACE, RC1 NH3 FE	EED RM	-5	5		Corrosion, insulation integr works is the light, sun dama eead screen; Needs COF sco	age cant				
ocess -	Process	- Electrical	Electrical System	5296 E	ELECTRIC MOTOR, 1, W	/ORLD MO TOR, 2, T344A, C11-T	344A-M, SCRUBBER,	RC1	-2		4	Health & safety, regulatory					
	Structures	Tattectricat	Electrical System	5297 E	ELECTRIC MOTOR, 1, SI	IEMENS, 20, PE-21 PLUS, A00T1	521 CE6, S CRUBBER,	RC1	-2	4	4	Corrosion (electrical)		safety, regulatory			
		Process	Electrical Scrubber System	5298 E	ELECTRIC MOTOR, 2, SI	IEMENS, 20, PE-21 PLUS, A00T15	521 CE8, S CRUBBER,	RC1	-2		4	Health & safety, regulatory					
		Structures	Electrical Feed Pumps	5285	ELECTRIC MOTOR, E	EXFAN, BALDOR, 0.25, L3500, F	1186, CL2 FEED, RC	1	-20	5		Operability (inoperable)					
		Process Structures	Process Structures Piping	9070		PIPING, RAW WATER PIPE, RC1			18	4		Steel damage (corrosion)		4			

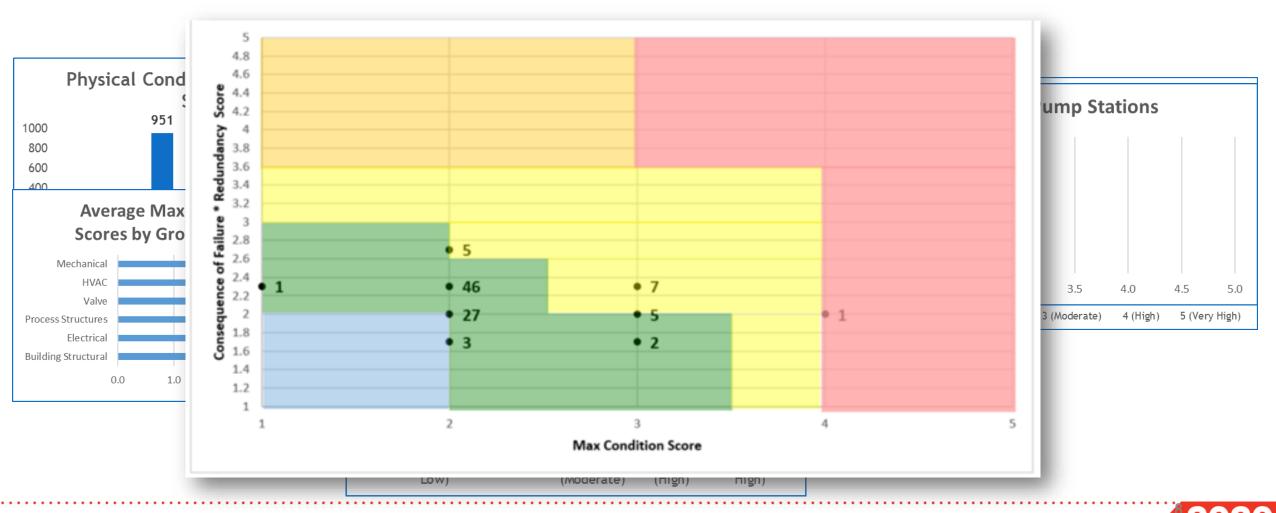
Utilities are Starting to Capture Better Electronic Data in CMMS to Support Risk Based Planning

Predictive Testing and Trending

Downtime Hours by Asset

Corrective Maintenance Workorders and Hours by Asset

Initial Installation Costs


Asset Physical Condition Score Asset Performance Condition Reliability

Asset Performance Condition Efficiency

Replacement Cost

Reviewing Data From Spreadsheets is Time Consuming and Not Interactive

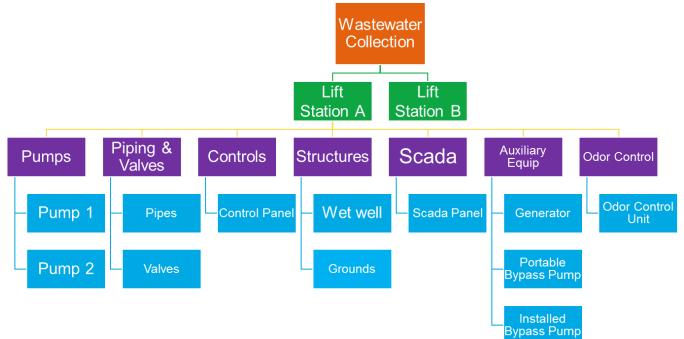
Poll Question #1

What challenges does your organization face in making data driven decisions?

- Data is inaccurate or not trusted by the organization
- Data is not consolidated in one place to analyze
- Data is not available
- There is no framework in place to analyze the data
- There is no one assigned to analyze the data

Data Analytics Tools Can Support Improved Review and Analysis of Data With Little Effort

- Microsoft Power BI Data Analytics Solution
 - Free version available (desktop and web)
 - Can take data form multiple sources (Excel, GIS, CMMS etc.)
 - Built in query editor or programming capabilities
- Create Interactive Reports and Dashboards


Case Study Lift Station Replacement Planning in Texas

- 134 Lift Stations
 - Duplex and Triplex
 - 1980 2019 installations

Determine 5 Year CIP

Determine Long Term Funding

- Various service level scenarios
- % Maximum Risk
- System Renewal/Replacement %

Methodology Overview - Likelihood of Failure

Visual Assessments

Tablet Based Forms

- Mechanical
- Structural
- Electrical/I&C

Scoring 1 to 5

• Mortality Failure

Criteria	Condition	1 (best)	2	3	4	5
		CC	ORE CRITERIA	÷.		
ļ.	Joint Deterioration	None	<10%	10% - <30%	30% - 50%	>50%
	Cracking (width of crack)	None	< 1mm	1-2mm	>2mm	Not Serviceable
	Exposed Reinforcement	None	-		1 location	>1 location
Concrete /	Spalling, Exposed Aggregate, Pitting, Delamination	None	-	<10%	10% - 30%	>30%
Masonry Damage (wet well)	Liner Failure	None	1 location: weld strip failure of dimpling 1% of area	>10% dimpling blistering	liner failed	-
Franking and	Surface Corrosion or dry rot	None	<10%	10% - <25%	25% - 50%	>50%
Fencing and Gates	Operability	Full	-	Minor Issue	1 location	Inoperable
Gates	Loss of Section	None	-	<10%	10% - 30%	>30%
	•	ANCI	LLARY CRITERIA			
Sidewalks/Drivew	Cracking (width of crack)	None	< 1mm	1-2mm	>2mm	Not Serviceable
ays	Structural damage	None	-	-	1 location	>1 location
	Surface Damage	<10%	10% - <25%	25% - 50%	>50% - 85%	>85%
	Leaks	None	-	•	1 location	>1 location
Hatches & Grates	Surface Corrosion	None	<10%	10% - <25%	25% - 50%	>50%
	Structural Damage	None	-	-	-	>= 1 location

This form should be used for wet well and grounds assets

Methodology Overview - Likelihood of Failure

- Desktop Assessment
 - Interviews
 - Document Reviews
 - Electrical/I&C
- Scoring 1 to 5
 - Performance Failure

Performance Condition Assessment								
Category	Criteria	Evaluation	1 (best)	2	3	4	5	
Capacity	Capacity	Ability for station (pumps, wet well, etc.) to meet current and future current capacity related to growth and I&I Peak Issues	Meets requirements for >10 years	Meets requirements for next 10 years	Meets requirements for next 5 to 9 years	Will not meet requirements in < 5 years	Does not meet current requirements	
Level of Service	Resilience (Back-up Power)	Back-up Power capabilities for stations serving critical customers, or stations with unreliable power supply	On site bypass pump	On-site generator	Receptacle available for portable pump and power supply is reliable	Electrical receptacle available, power supply is unreliable	N/A	
	Resilience (Flooding)	Location of station related to the potential for flooding	Station is not in a flood zone	Station is not located in a 100 year City flood area	Station is located in a 25 year City flood area	N/A	Station is located in a 10 year City flood area	
	Regulatory	Ability to meet current regulations related to SSO's and Odors	No odor complaints or SSO's in last year	N/A	One SSO documented related to station control failure in last year and or 1-3 odor complaints	More than one SSO in last three years due to control failure	More than one SSO in last year due to control failure or >5 odor complaints	
	Reliability	Average time equipment is available when needed	99-100%	95-99%	90-94%	85-89%	< 85%	
11 Efficiency	O&M Issues	Frequency of O&M Issues beyond regular maintenance (excluding breakdowns)	None	Very infrequently (Quarterly)	Infrequently (Monthly)	Frequently (Weekly)	Very frequently (>Weekly)	
	Obsolescence	Status of Equipment Technology, Operating Efficiency, Spare Parts Availability, Energy Efficiency	Best available Operating cost optimal Obsolescence expected >10 years	Technology industry standard/ "Tried and True" Obsolescence expected >5 years	Technology considered appropriate Obsolescence expected within 5 years	Technology nearing obsolescence: (SCADA and Controls installed <2000) Spares still available Parts cost excessive	Technology obsolete Spares not available	

Methodology Overview - Consequence of Failure

- Desktop Assessment
 - Interviews
 - Visual Adjacency
- Scoring 1 to 5
 - Economic
 - Social
 - Environmental

Consequence of Failure Assessment								
Category	Criteria/Measure	1	2	3	4	5		
	Replacement Cost	<\$250,000	\$250,000 - \$1,000,000	\$1,000,001 - \$3,000,000	\$3,000,001 - \$10,00,000	>\$10,000,00		
Economic	O&M – Staffing impacts for asset replacement/emergency response	No impact	Low impact <=2 FTE for >=1 day	Moderate impact 2+FTE's for <+ 1 week	High impact 2+FTE's for > 1 week, emergency contract, or requires work at multiple stations	N/A		
	Service Disruption Magnitude	Station with 2 pumps	Station with 3 pumps	Station with 4 pumps	Station with 5+ pumps or regional pump station	N/A		
Social	Public Health & Safety and Utility Reputation	Remote station	Station visibly located in subdivision or commercial center	Station can cause upstream back-ups with 3 rd party damage, and or is located near to a school or hospital	N/A	N/A		
Environmental	Potential for sewage discharge - proximity	N/A	N/A	Adjacent to a stormwater system	Adjacent to a water body	N/A		
	Response time required before sanitary sewer overflow	No impact	>=8 hours	2 to 8 hours	<2 hours	Immediate		

Redundancy Not Considered to be Conservative

Risk Scoring Application: Piping & Valves

- LoF = 4
- CoF = 3
- Risk = 4 * 3 = 12

High Score & Poor Condition

• 5 Year CIP

Decay Curves & Remaining Life

• Long Term Planning

	Physical Condition						
	Core Criteria	Score	Comment				
	Corrosion	4	Corrosion throughout				
	Leakage	1	No leakage present				
	Vibration / Noise	2	<10% of normal				
	Concrete Supports	1	No damage				
	Steel Supports	1	No damage				
	Evidence of Repair						
	Perf	ormance	Condition				
	Criteria	Score	Comment				
	Capacity	1	Meets needs for 10 years				
Redundancy	Regulatory	1	Meets needs for 10 years				
Two pumps are provided with one needed	Reliability	1	Uptime <90%				
at peak flow. Overall pump reliability is	O&M Issues	1	Clogs monthly				
poor, and no redundancy credit is	Obsolescence	2	Still in production				
calculated.	Resilience	2	Impacts >50 years				
Consequence of Failure							
Category	Criteria	Score	Comment				
Economic CoF	Replacement cost	1	Replacement Cost <\$250k				
Economic Cor	O&M Cost	1	No impact				
Social CoF	Service Disruption	1	Station with 2 pumps				
	Health & Safety	3	Station is near school				
Environmental CoF	Discharge Potential	3	Adjacent to storm sewer				
	Response Time	2	No impacts up to 8 hours				

Poll Question #2


Which types of IT systems do you use to support capital or O&M decision making?

- Access Databases
- Excel Databases
- Computerized Maintenance Management Systems
- Business Intelligence Software: Power BI, Tableau, etc.
- Advanced Decision Support Software: Optimatics, InfoAsset Planner, Baseform, PowerPlan, etc..
- None of the above

Developing the CIP Using Power BI

Sugar Land Lift Station RRPS v6.0 PBI v1.2 7/22/2019 6:49:14 PM

Results & Lessons Learned

Rehabbing 6 Selected Stations Funding Needs to Per Year Does Not Increase From Maximize Risk \$1.6M to \$3M Per **Reduction or** Year Target Poor Condition **CMMS** Data Can Service Level Effectively Targets for Lift Interface with **GIS and Power BI** Stations are Complicated for Risk Based Planning

Thank You for Your Time Questions?

Celine Hyer, PE, IAM

20

Celine.hyer@arcadis.com

WATER ENVIRONMENT FEDERATION COLLECTION SYSTEMS CONFERENCE

Optimatics

WELLINGTON WATER'S APPLICATION OF ARTIFICIAL INTELLIGENCE FOR WASTEWATER INFRASTRUCTURE PLANNING

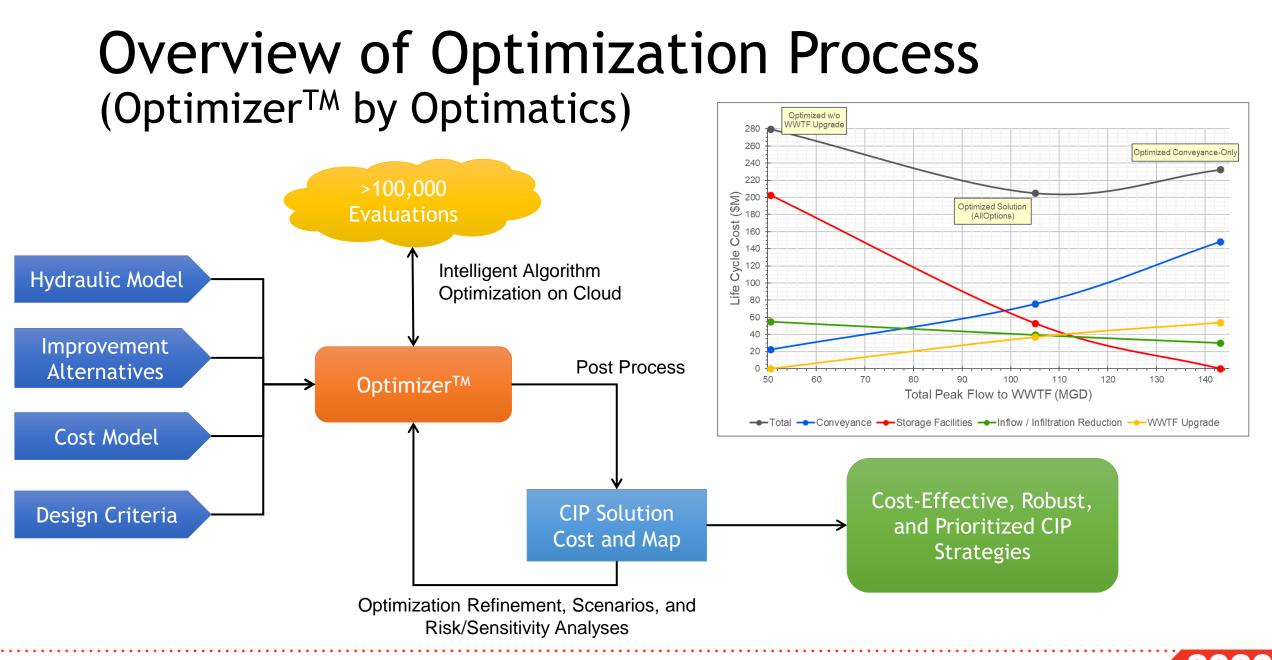
Wellington Water

Andrew Faulkner - WCS Engineering Joel Wilson - WCS Engineering Steve Hutchison - Wellington Water Abby Jensen - Beca

Beca

20)

Presentation Overview


- Overview of Optimatics' optimization technology and its application to the Porirua Capital Improvement Program (Wellington Water)
- Porirua Network Improvement Program Optimization:
 - Existing System Performance
 - Optimization of Improvement Alternatives to determine preliminary Preferred Master Plan
 - Prioritization of Preferred Master Plan
 - Project Outcomes

2020

US Dept of State Geographer © 2020 Google Data SIO, NOAA, U.S. Navy, NGA, GEBCO © 2020 GeoBasis-DE/BKG

31°45'42.92" N 106°29'06.63" W eye alt 20071.60 km 🔘

Porirua Optimization and Prioritization

How can we use optimization to evaluate SSO control measure alternatives?

INPUTS

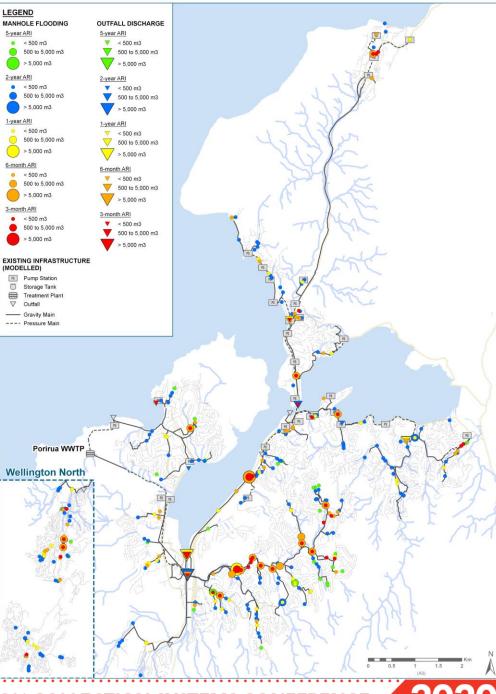
Hydraulic Model (ICM) Population Growth Projection Design Storm ARI Life Cycle Cost Data

ALTERNATIVES

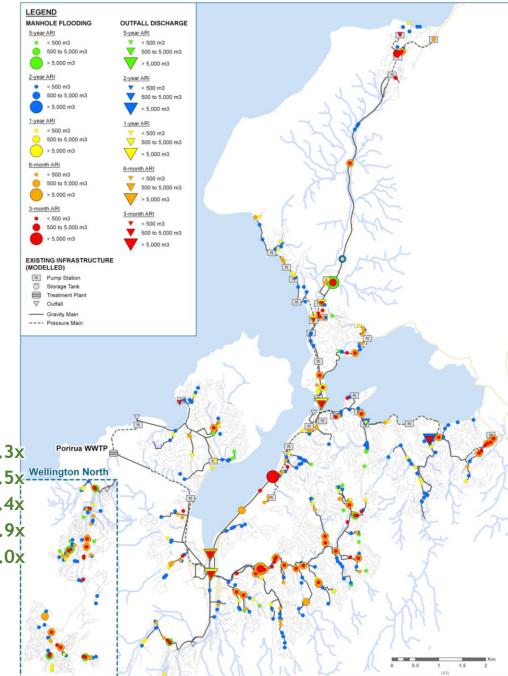
Conveyance upgrades (inc. lift stations and force mains) I/I reduction Storage facilities Treatment Plant upgrade

CRITERIA

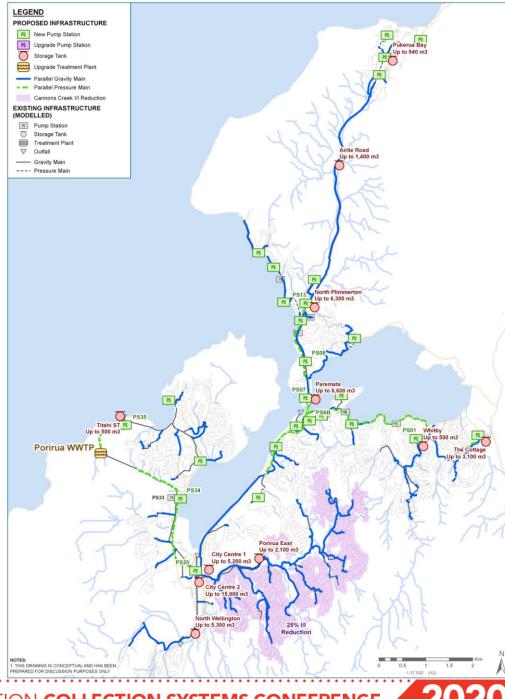
Eliminate uncontrolled sanitary sewer overflow (SSO) Eliminate constructed outfall structure discharge Consider a range of level of service targets for each (e.g. composite design target of 1-year for uncontrolled SSO and 6-month for constructed outfall)


Minimize Cost and Prioritize Expenditure

Existing System Performance Results (2019 Population)


Scenario	Design Storm	Rainfall Event	Uncontrolled SSO Overflows (#)	Constructed Outfall Discharge (#)	Uncontrolled SSO Volume (ML)	Outrall	Total SSO Volume (ML)
	4EY	1.6 inches	37	5	7	1	8
	2EY		84	7	13	4	17
2019 Population	1Y		137	7	36	16	52
	2Y		306	9	58	23	81
	5Y	5.5 inches	325	9	65	29	95

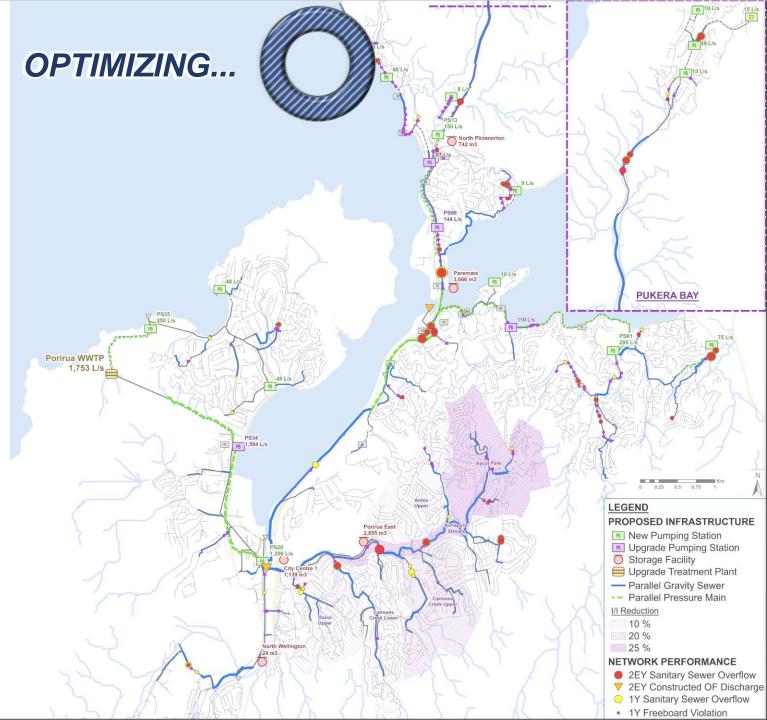
Porirua receives approx. 1200mm (4 feet) of annual rainfall.


Existing System Performance Results (2057 Population)

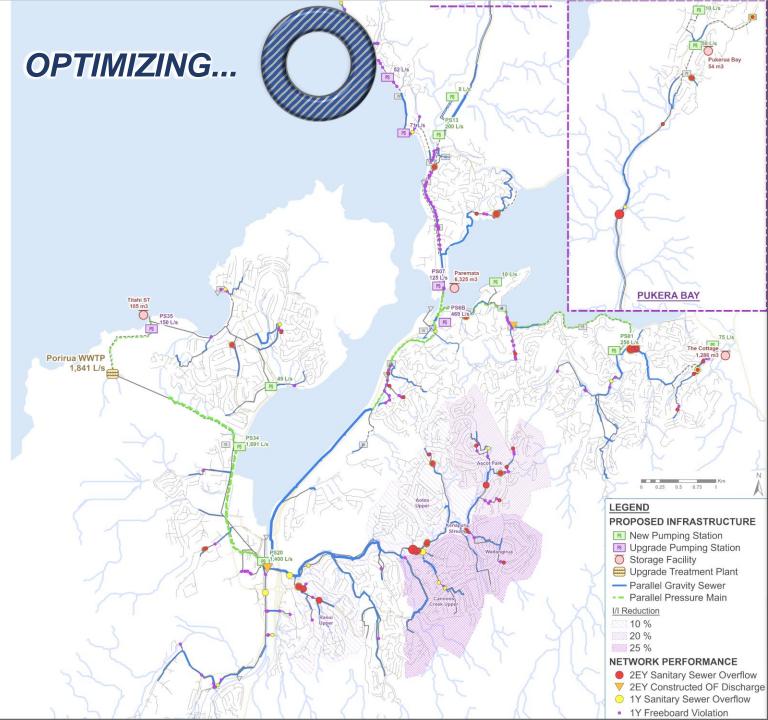
Scenario	Design Storm	Rainfall Event	Uncontrolled SSO Overflows (#)	Constructed Outfall Discharge (#)	Uncontrolled SSO Volume (ML)	Constructed Outfall Discharge Volume (ML)	Total SSO Volume (ML)
2019 Population	4EY	13/08/2010	37	5	7	1	8
	2EY	9/12/2014	84	7	13	4	17
	1Y	5/04/2017	137	7	36	16	52
	2Y	14/11/2016	306	9	58	23	81
	5Y	13/05/2015	325	9	65	29	95
2057 Population	4EY	13/08/2010	79	9	20	8	28 🕇 3.3
	2EY	9/12/2014	164	8	30	14	44 🕇 2.5
	1Y	5/04/2017	226	10	80	43	123 🕇 2.4
	2Y	14/11/2016	439	11	114	41	156 👚 1.9
	5Y	13/05/2015	462	10	129	58	187 🕇 2.0

Optimization Alternatives (2057 Population)

- Conveyance Upgrades:
 - Parallel relief sewers (gravity and pressure)
 - Pumping station upgrades
 - Trimmed model extent based on 1-year design storm deficiencies
- Treatment plant expansion
- Storage facilities at suggested locations
- I/I reduction in Cannons Creek


Porirua Optimization 75,000 Model Evaluations on Cloud Computing Service

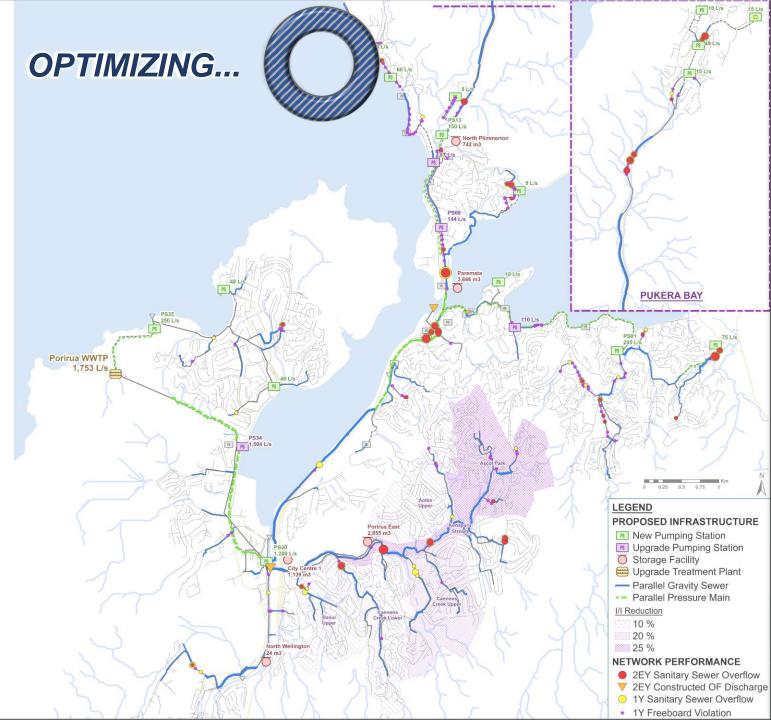
Example Animation (Glass Box View of an Optimization Run)


Number of Trial Solutions - 100

	Cost Item		Cost (\$M)
	Gravity Se	wer Upgrades	\$137.6
Pu	umping Station & Pressure M	lain Upgrades	\$91.0
	Stor	rage Facilities	\$87.3
		Plant Upgrade	\$24.9
	Inflow and Infiltrat		\$7.9
		TOTAL COST	\$348.7
	TOTAL		\$798.0
	hitary Sewer Overflow (2EY D	- /	8,376 m3
	ted Outfall Discharge (2EY D	o ,	2,499 m3
Sa	nitary Sewer Overflow (1-yr D Freeboard Violations (1-yr D	o ,	20,746 m3 117
		. ,	
\$800 🔿	Optimization	Converge	nce
\$700		Gravity S	g Station & Pressur
\$600		Treatme	Facilities nt Plant nd Infiltration Reduc nalty, SSO Penalty
\$600		Treatme	nt Plant nd Infiltration Redu
\$600 \$500 \$400		Treatme	nt Plant nd Infiltration Redu
\$600 \$500 \$400 \$300		Treatme	nt Plant nd Infiltration Redu
\$600 \$500 \$400 \$300 \$200		Treatme	nt Plant nd Infiltration Redu
\$300		Treatme	nt Plant nd Infiltration Redu

Number of Trial Solutions - 600

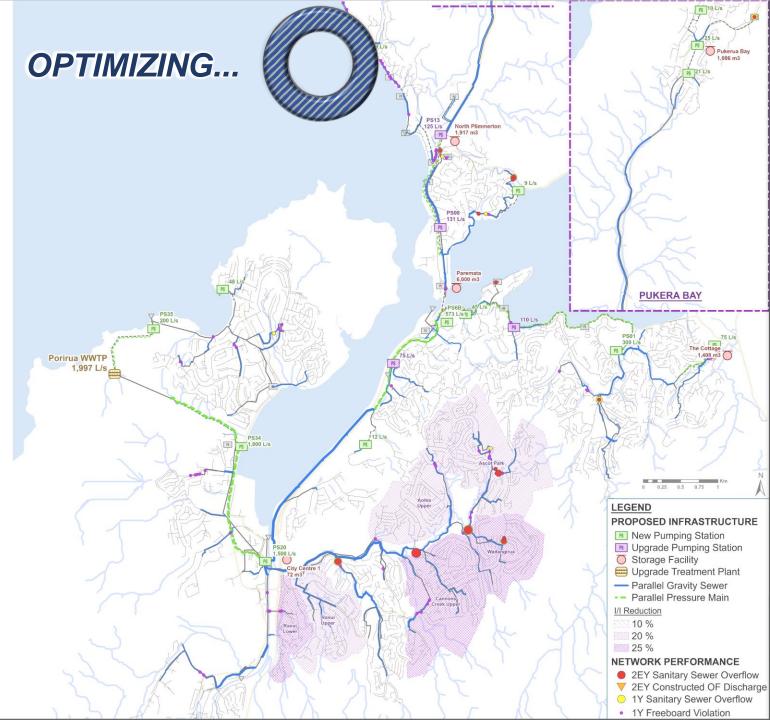
			Cost	ltem					Co	ost (\$M)	
				Gravi	ity Se	wer L	Jpgrad	des		\$138	.5	
	Pump	oing Sta	ation &	Press	ure N	1ain L	Jpgrad	des				
					Sto	rage F	-acilit	ies				
_			Inflow	and Ir								
-				•				'		·		
Cons				- ·		-		,				
						· ·		'	76	1 - C		
	FIG					-)	
		0	ptim	Izat	Ion	Col	nve	rge	enc	е		
00							To Gra Pu Sto Tre	tal Co avity mpin prage eatme low a	ost Sewe g Sta Facil ent Pl nd Inf	ers tion & lities ant filtratio	on Re	duc
00												
00												
00 0												
00												
		Sanita Constructed Sanita Fre	Pumping Sta Sanitary Sewe Constructed Outfall Sanitary Sew Freeboarc O	Pumping Station & Inflow Sanitary Sewer Over Constructed Outfall Discha Sanitary Sewer Over Freeboard Violat Optim	Pumping Station & Press Treatr Inflow and Ir Sanitary Sewer Overflow (2 Constructed Outfall Discharge (2 Sanitary Sewer Overflow (Freeboard Violations (Optimizat 00 00 00 00 00 00 00 00 00 0	Gravity Se Pumping Station & Pressure M Sto Treatment I Inflow and Infiltrat TOTAL Sanitary Sewer Overflow (2EY D Sanitary Sewer Overflow (1-yr D Sanitary Sewer Overflow (1-yr D Sanitary Sewer Overflow (1-yr D Freeboard Violations (1-yr D Optimization	Gravity Sewer L Pumping Station & Pressure Main L Storage I Treatment Plant Inflow and Infiltration R TOTAL OB. Sanitary Sewer Overflow (2EY Design Constructed Outfall Discharge (2EY Design Sanitary Sewer Overflow (1-yr Design Freeboard Violations (1-yr Design Optimization Cou	Gravity Sewer Upgrad Pumping Station & Pressure Main Upgrad Storage Facilit Treatment Plant Upgra Inflow and Infiltration Reduct TOTAL CO TOTAL OBJECTI Sanitary Sewer Overflow (2EY Design Stor Constructed Outfall Discharge (2EY Design Stor Sanitary Sewer Overflow (1-yr Design Stor Freeboard Violations (1-yr Design Stor Freeboard Violations (1-yr Design Stor To Optimization Conve	Gravity Sewer Upgrades Pumping Station & Pressure Main Upgrades Storage Facilities Treatment Plant Upgrade Inflow and Infiltration Reduction TOTAL COST TOTAL OBJECTIVE Sanitary Sewer Overflow (2EY Design Storm): Constructed Outfall Discharge (2EY Design Storm): Sanitary Sewer Overflow (1-yr Design Storm): Freeboard Violations (1-yr Design Storm): Doptimization Converge O O O O O O O O O O O O O O O O O O O	Gravity Sewer Upgrades Pumping Station & Pressure Main Upgrades Storage Facilities Treatment Plant Upgrade Inflow and Infiltration Reduction TOTAL COST TOTAL OBJECTIVE Sanitary Sewer Overflow (2EY Design Storm): 6 Constructed Outfall Discharge (2EY Design Storm): 10 Sanitary Sewer Overflow (1-yr Design Storm): 10 Freeboard Violations (1-yr Design Storm): 10 Dote Total Objectiv Total Cost Gravity Sewer Pumping Sta Storage Facil Treatment Pl Inflow and Ini	Gravity Sewer Upgrades \$138 Pumping Station & Pressure Main Upgrades \$86. Storage Facilities \$45. Treatment Plant Upgrade \$24. Inflow and Infiltration Reduction \$8.3 TOTAL COST \$303 TOTAL COST \$303 TOTAL OBJECTIVE \$740 Sanitary Sewer Overflow (2EY Design Storm): 6,443 Constructed Outfall Discharge (2EY Design Storm): 1,339 Sanitary Sewer Overflow (1-yr Design Storm): 16,801 Freeboard Violations (1-yr Design Storm): 146 Optimization Convergence O O O O O O O O O O O O O O O O O O O	Gravity Sewer Upgrades \$138.5 Pumping Station & Pressure Main Upgrades \$86.1 Storage Facilities \$45.6 Treatment Plant Upgrade \$24.9 Inflow and Infiltration Reduction \$8.2 TOTAL COST \$303.3 TOTAL OBJECTIVE \$740.8 Sanitary Sewer Overflow (2EY Design Storm): 6,443 m3 Constructed Outfall Discharge (2EY Design Storm): 1,339 m3 Sanitary Sewer Overflow (1-yr Design Storm): 16,801 m3 Freeboard Violations (1-yr Design Storm): 16,801 m3 Freeboard Violations (1-yr Design Storm): 146 Optimization Convergence Total Objective Total Objective Total Objective Total Cost Gravity Sewers Pumping Station & Press Storage Facilities Treatment Plant Inflow and Infiltration Re- Total Penalty, SSO Pena


Number of Trial Solutions - 2,101

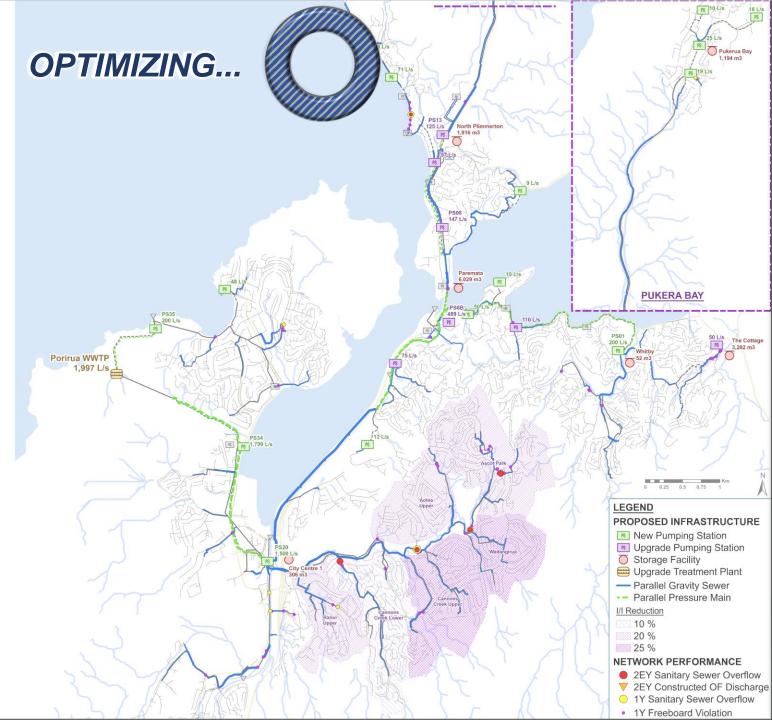
												,			~				
					Co	ost	lte									ost (
									y Se			-				\$139			
		Pu	mpin	g St	atio	n &	Pre	รรเ				-				\$58.			
									Sto	rage	F	acil	ities			\$118	.1		
							Trea	atm	ent	Plar	nt L	Jpgi	rade			\$24.	9		
					In	flow	and	l Inf	iltrat	ion	Re	duc	tion			\$7.4	1		
										ΓΟΤ	'AL	- C(DST			\$348	.5		
								ТС	DTA	_ 0	BJI	ECT	IVE			\$671	.8		
		Sani	itary	Sew	er C	Dver	flow	(2E	EY D	esi	gn	Sto	rm):		4,	938	т3		
С	onst	ructe	ed O	utfall	l Dis	scha	arge	(2E	EYC)esi	gn	Sto	rm):		E	5 <mark>5</mark> 6 n	n3		
			itary					`			<u> </u>				14	,063	<i>m</i> 3		
			Freel	boar	d Vi	iolat	ions	; (1·	-yr D)esi	gn	Sto	rm):			103	8		
				0)pt	im	iza	ntio	on	Сс	on	Ve	erg	en	Ce	9			
\$800	1				-								otal (
										_		— To	otal (Cost	t				
\$700												G	ravit	y Se	ewe	rs ion &	Drog	ouro	. N.Л.
φι σσ	b									_		- S'	torac	ae F	acil	ities	FIES	sure	IVI
	0									-		- Ti	eatr	nent	t Pla	ant			
\$600	0 0 0	-														iltratio SSC			
	0														, ,				
\$500	0 0 0	_									_								_
\$400																			
φ400																			
	17																		
\$300	V																		-
	0 0 0																		
\$600 \$500 \$400 \$300 \$200														_					_
\$100	Q																		
φτυυ	16																		
	K																		
\$0	PO		10	45	. ,			~	<u> </u>		40	<u>`</u>	45	F 0	_		20	05	70
	0	5	10	15		20 Jum	25 ber	30 of		35 Sol	40 uti		45 (Th	50 ous			60	65 Tř	7 101

Number of Trial Solutions - 3,100

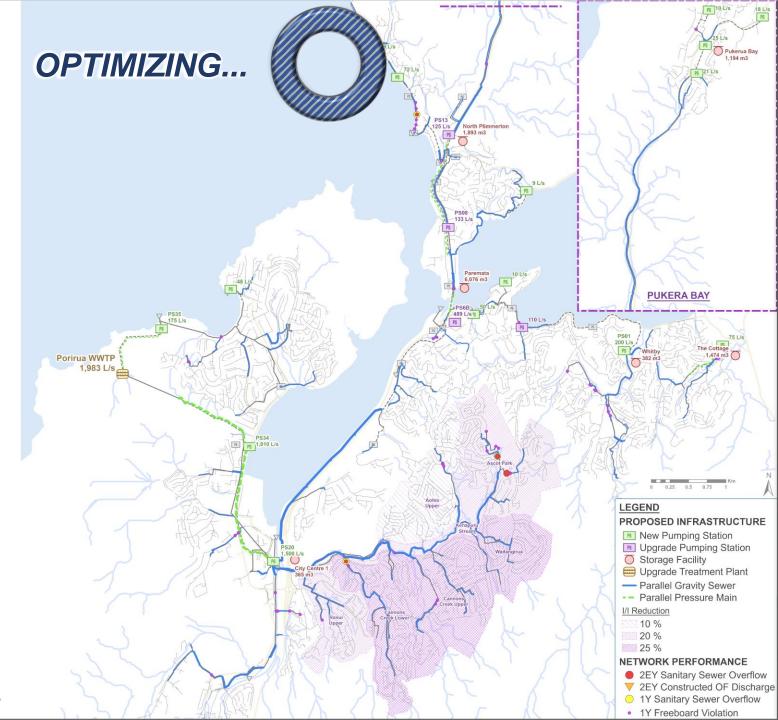
C	Cost Item	Cost (\$M)
	Gravity Sewer Upgrades	\$136.9
Pumping Stati	ion & Pressure Main Upgrades	\$60.0
	Storage Facilities	
	Treatment Plant Upgrade	
	Inflow and Infiltration Reduction	
	TOTAL COST	
	TOTAL OBJECTIVE	
-	Overflow (2EY Design Storm)	
	Discharge (2EY Design Storm):	
	r Overflow (1-yr Design Storm): Violations (1-yr Design Storm):	
	,	
\$800	otimization Converg	jence
\$700	Total Gravi Pump Stora	Objective Cost ty Sewers ing Station & Pressure ge Facilities ment Plant
\$600		and Infiltration Reduction Reduction Penalty, SSO Penalty
\$500		
\$500		
\$500		
\$500 \$400 \$300		


Number of Trial Solutions - 4,866

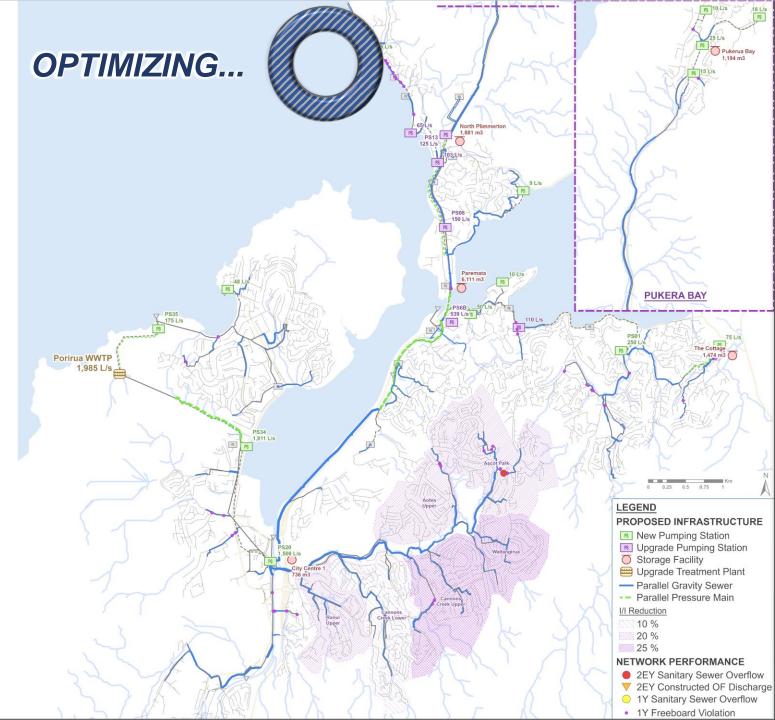
Cos	st Item	Cost (\$M)
	Gravity Sewer Upgrades	\$142.8
Pumping Station	& Pressure Main Upgrades	\$89.5
	Storage Facilities	\$70.9
	Treatment Plant Upgrade	
Inflo	w and Infiltration Reduction	
	TOTAL COST	
	TOTAL OBJECTIVE	
	erflow (2EY Design Storm):	
	harge (2EY Design Storm): verflow (1-yr Design Storm):	77 m3 4.064 m3
	ations (1-yr Design Storm):	4,004 113
	nization Converg	0000
\$800 •	mzation converg	ence
\$700	Gravit	y Sewers ing Station & Pressur
\$600	Storag Treatr Inflow	pe Facilities nent Plant and Infiltration Redu Penalty, SSO Penalty
	Storag Treatr Inflow	ge Facilities nent Plant and Infiltration Redu
\$600	Storag Treatr Inflow	ge Facilities nent Plant and Infiltration Redu
\$600	Storag Treatr Inflow	ge Facilities nent Plant and Infiltration Redu
\$600 \$500 \$400	Storag Treatr Inflow	ge Facilities nent Plant and Infiltration Redu
\$600 \$500 \$400 \$300	Storag Treatr Inflow	ge Facilities nent Plant and Infiltration Redu



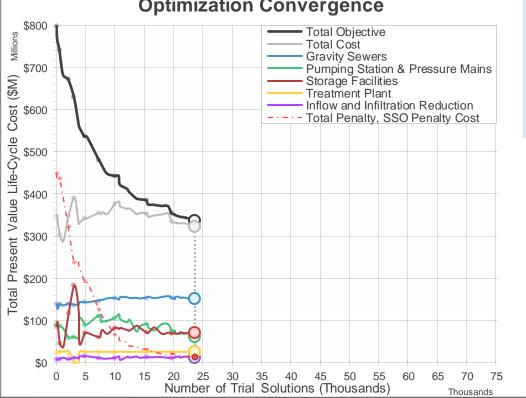
Number of Trial Solutions - 7,300

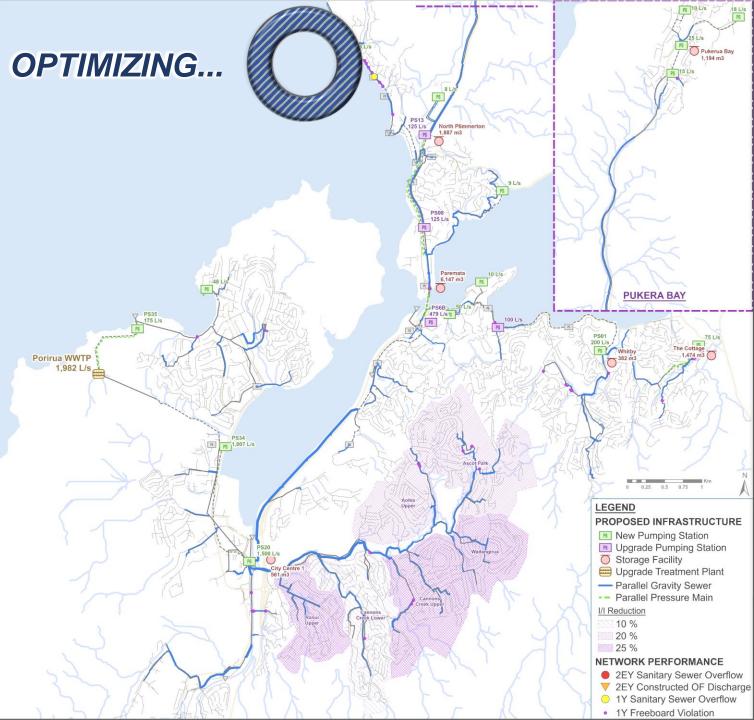

		.,				
	Cost Item		Cost (\$M)		
	Gravity Sewer L	10	\$147.1 \$110.8			
Pumping Sta	Pumping Station & Pressure Main Upgrades					
	Storage	Facilities	\$61.1			
	Treatment Plant	Upgrade	\$24.9			
	Inflow and Infiltration R		\$10.4			
		AL COST	\$354.3			
	TOTAL OB	JECTIVE	\$481.3			
-	r Overflow (2EY Desigr Discharge (2EY Desigr	,	2,393 m3			
	er Overflow (1-yr Design	,	6,641 m3			
2	Violations (1-yr Design	,	43			
O	otimization Co	nverge	ence			
\$700 \$600 \$500 \$400 \$300 \$200		Pumpin Storage Treatme		educ		
\$500						
\$400						
\$300						
\$200						
\$100						
\$100						

Number of Trial Solutions - 10,001



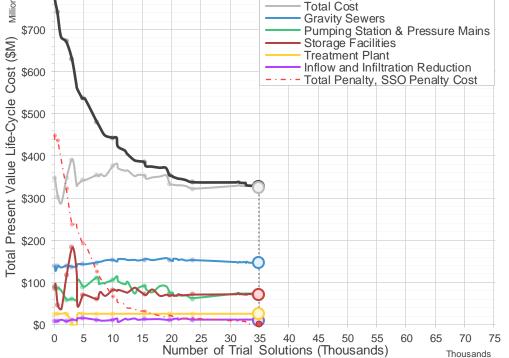
Number of Trial Solutions - 15,401

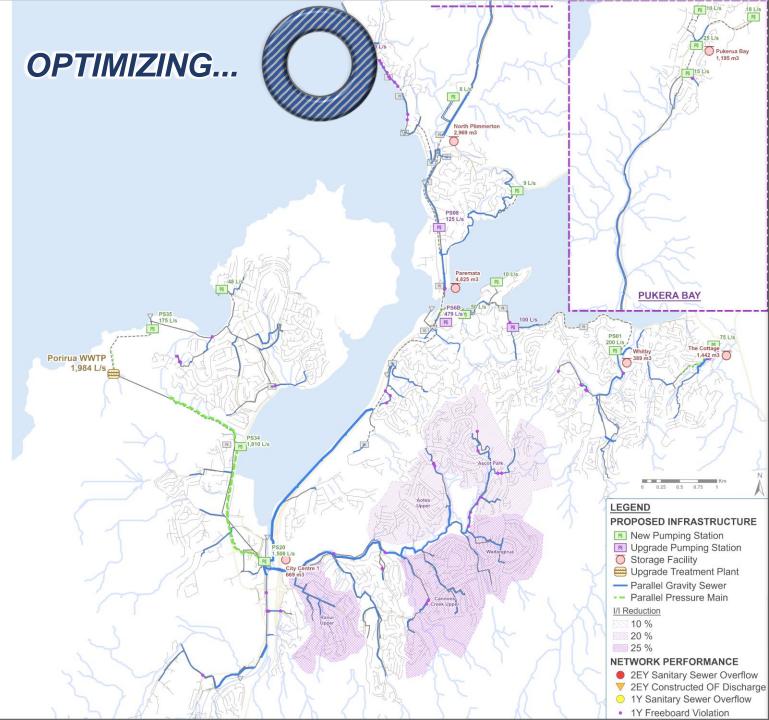

Number of Trial Solutions - 19,700


Cost Item		Cost (\$N	(N
Gravity Sewer Upgr	rades	\$153.1	
Pumping Station & Pressure Main Upgr	rades	\$74.9	
Storage Fac	ilities	\$68.8	
	•		
		-	
TOTAL OBJEC	TIVE	\$354.6	
, , , , , , , , , , , , , , , , , , , ,	,	161 m3	
3 (3	,	110	
	,		
	,		
	erge	nce	
	Gravity S Pumping Storage Treatme Inflow ar	Sewers g Station & Pr Facilities nt Plant nd Infiltration	Reduc
Marine 1			
mar o			
	Gravity Sewer Upg Pumping Station & Pressure Main Upg Storage Fac Treatment Plant Upg Inflow and Infiltration Redu TOTAL OBJEC Sanitary Sewer Overflow (2EY Design St Constructed Outfall Discharge (2EY Design St Sanitary Sewer Overflow (1-yr Design St Freeboard Violations (1-yr Design St Optimization Conv	Gravity Sewer Upgrades Pumping Station & Pressure Main Upgrades Storage Facilities Treatment Plant Upgrade Inflow and Infiltration Reduction TOTAL COST TOTAL COST Sanitary Sewer Overflow (2EY Design Storm): Constructed Outfall Discharge (2EY Design Storm): Sanitary Sewer Overflow (1-yr Design Storm): Freeboard Violations (1-yr Design Storm): Optimization Converge	Gravity Sewer Upgrades \$153.1 Pumping Station & Pressure Main Upgrades \$74.9 Storage Facilities \$68.8 Treatment Plant Upgrade \$24.9 Inflow and Infiltration Reduction \$10.8 TOTAL COST \$332.6 TOTAL COST \$332.6 Sanitary Sewer Overflow (2EY Design Storm): 161 m3 Constructed Outfall Discharge (2EY Design Storm): 419 m3 Freeboard Violations (1-yr Design Storm): 19 Optimization Convergence Optimization Convergence Optimization Convergence Optiming Station & Pi Storage Facilities Treatment Plant Inflow and Infiltration Optimization Convergence Optimization Storage Facilities Treatment Plant Inflow and Infiltration Optimization Storage Facilities Treatment Plant Inflow and Infiltration Optimizatio

Number of Trial Solutions - 23,631

Cost Item	Cost (\$M)
Gravity Sewer Upgrades	\$152.4
Pumping Station & Pressure Main Upgrades	\$61.7
Storage Facilities	\$71.7
Treatment Plant Upgrade	\$24.9
Inflow and Infiltration Reduction	\$11.2
TOTAL COST	\$321.8
TOTAL OBJECTIVE	\$337.1
Sanitary Sewer Overflow (2EY Design Storm): Constructed Outfall Discharge (2EY Design Storm): Sanitary Sewer Overflow (1-yr Design Storm): Freeboard Violations (1-yr Design Storm):	111 m3 14
Ontimization Converge	nco





Number of Trial Solutions - 34,900

SC

Cost Item		Cost (\$M)
Gravit	y Sewer Upgrades	\$146.3
Pumping Station & Pressu	ure Main Upgrades	\$72.2
	Storage Facilities	\$72.3
Treatm	ent Plant Upgrade	\$24.9
Inflow and Inf	filtration Reduction	\$9.9
	TOTAL COST	\$325.6
тс	OTAL OBJECTIVE	\$327.0
Sanitary Sewer Overflow (1 Freeboard Violations (1 Optimizati	,	14 NCE
	Total Ob Total Co Gravity S Pumping Storage Treatme	ojective ost Sewers g Station & Pressure Facilities

Number of Trial Solutions - 40.900

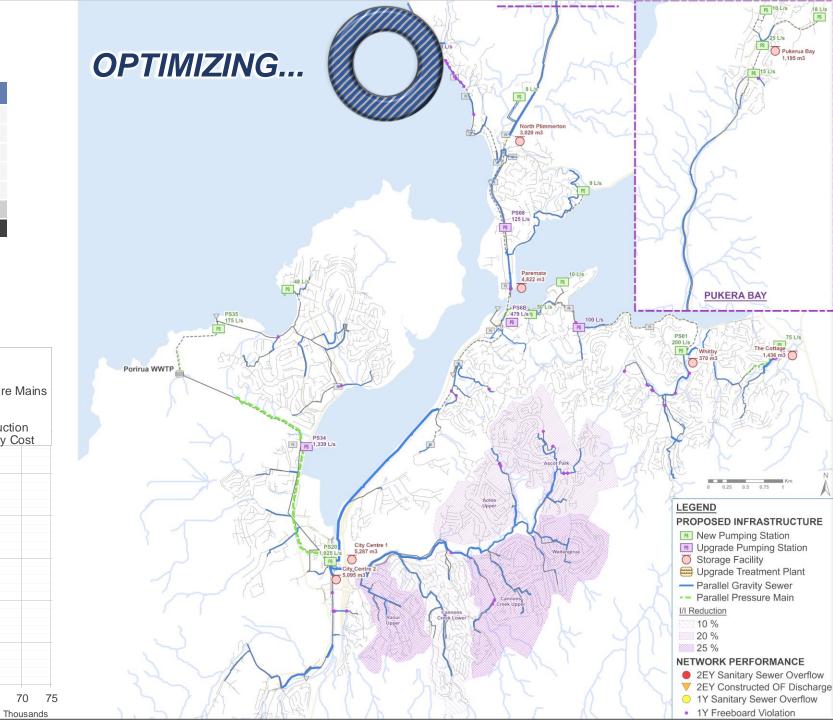
\$100

\$0

0

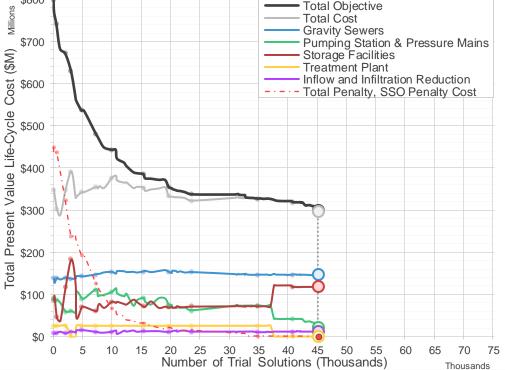
5

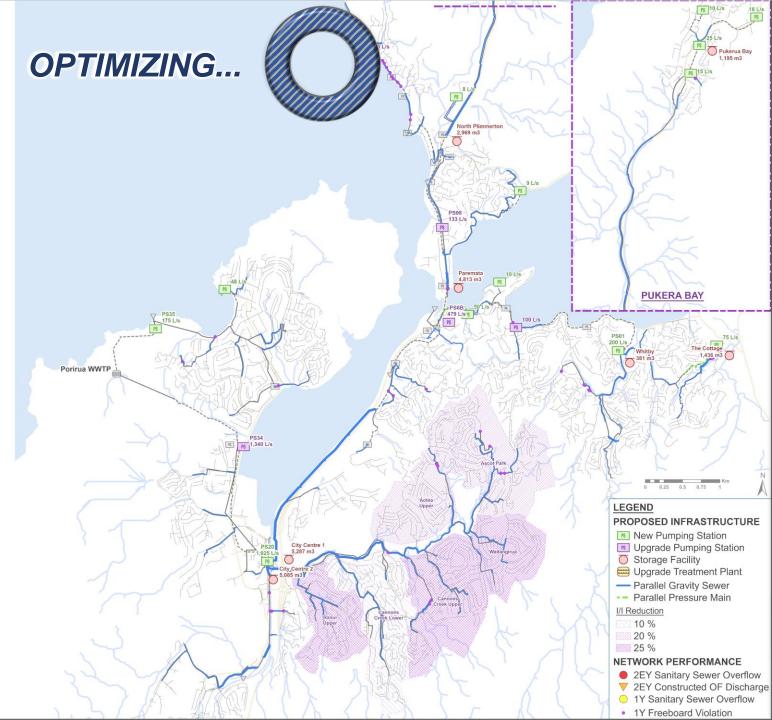
10


15

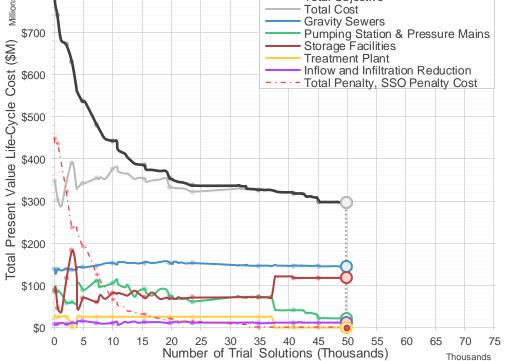
inum		bolutions -	40,900	,		
	Cost	ltem		Cost	(\$M)	
		Gravity Sewer L	Jpgrades	\$14	6.8	
	Pumping Station &	Pressure Main L	Jpgrades	\$4	1.2	
		Storage	Facilities	\$11	8.1	
		Treatment Plant	Upgrade			
	Inflow	and Infiltration R			1.2	
			L COST	\$31		
		TOTAL OB.	JECTIVE	\$31	8.4	
Consti	Sanitary Sewer Overf ructed Outfall Discha Sanitary Sewer Over Freeboard Violati	rge (2EY Desigr flow (1-yr Desigr	n Storm): n Storm):	1	1	
	Optim	ization Co	nverge	ence		
\$800 \$700 \$700 \$700 \$600 \$500 \$500 \$500 \$500 \$300 \$200 \$200 \$200 \$300 \$300 \$300 \$3			Treatme Inflow a	ost	tion Red	luction
υ						
\$500						
□ \$400 . □ \$400						
	har was					
≥ \$300 ₩			0			
sel sel			0 0 0 0			
\$200	·					
्र व	·····		ò			
			ŏ			

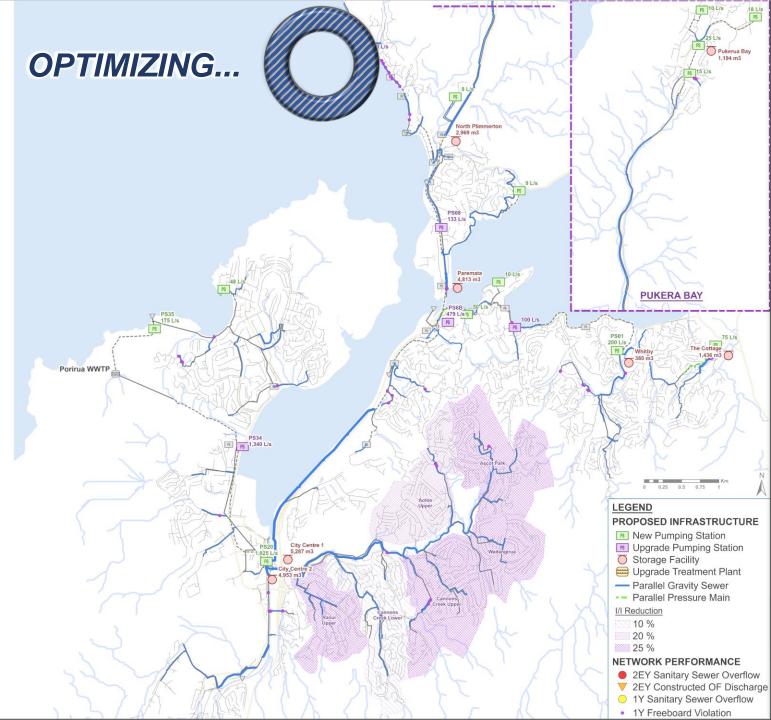
20 25 30 35 40 45 50 55 Number of Trial Solutions (Thousands)


60


65

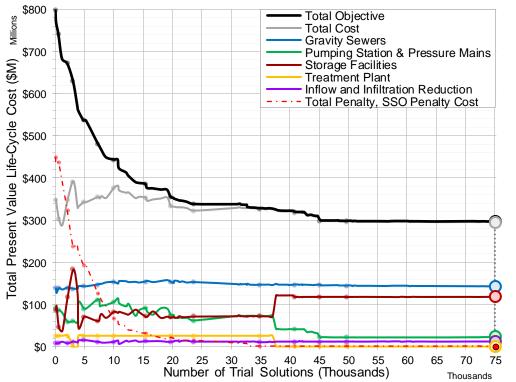
Number of Trial Solutions - 45,201

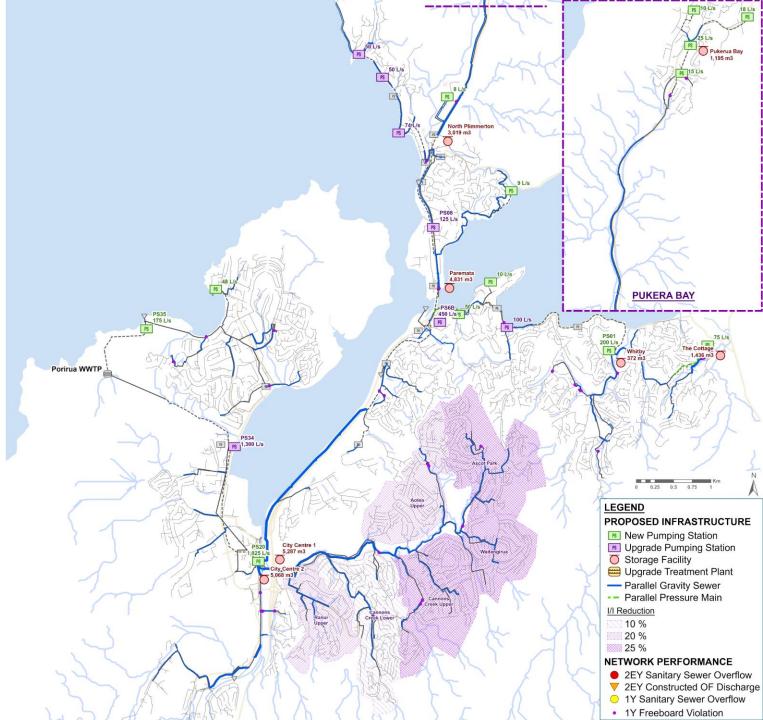

Cost Item	Cost (\$M)
Gravity Sewer Upgrades	\$146.1
Pumping Station & Pressure Main Upgrades	\$22.3
Storage Facilities	\$118.1
Treatment Plant Upgrade	
Inflow and Infiltration Reduction	\$11.2
TOTAL COST	\$297.6
TOTAL OBJECTIVE	\$298.7
Sanitary Sewer Overflow (2EY Design Storm): Constructed Outfall Discharge (2EY Design Storm): Sanitary Sewer Overflow (1-yr Design Storm): Freeboard Violations (1-yr Design Storm):	11
Optimization Converge	nce
Total Ob	



Number of Trial Solutions - 49,800

	•
Cost Item	Cost (\$M)
Gravity Sewer	Upgrades \$144.3
Pumping Station & Pressure Main	Upgrades \$22.3
Storage	Facilities \$117.7
Treatment Plant	Upgrade
Inflow and Infiltration F	Reduction \$11.7
ТОТА	AL COST \$296.0
TOTAL OB	JECTIVE \$297.0
Sanitary Sewer Overflow (2EY Design Constructed Outfall Discharge (2EY Design Sanitary Sewer Overflow (1-yr Design Freeboard Violations (1-yr Design	n Storm): n Storm):
Optimization Co	nvergence
\$700	 Total Objective Total Cost Gravity Sewers Pumping Station & Pressur

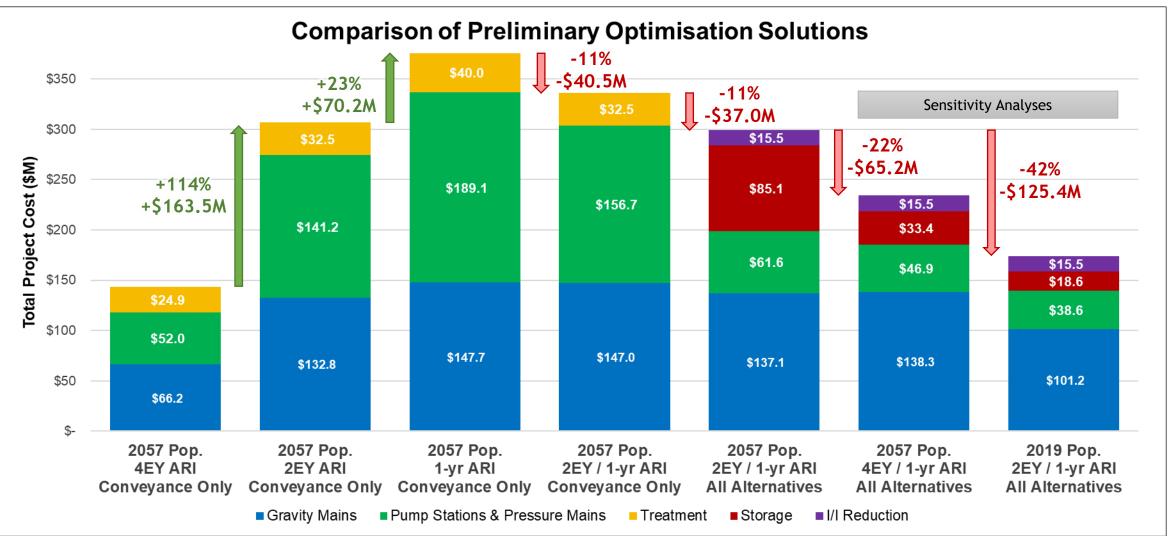

Number of Trial Solutions - 75,071


Cost Item	Cost (\$M)
Gravity Sewer Upgrades	\$142.4
Pumping Station & Pressure Main Upgrades	\$23.0
Storage Facilities	\$118.1
Treatment Plant Upgrade	
Inflow and Infiltration Reduction	\$11.4
TOTAL COST	\$294.8
TOTAL OBJECTIVE	\$295.5
Conitors Course Overflow (25V Design Storm)	

Sanitary Sewer Overflow (2EY Design Storm): Constructed Outfall Discharge (2EY Design Storm): Sanitary Sewer Overflow (1-yr Design Storm): Freeboard Violations (1-yr Design Storm):

Optimization Convergence

7



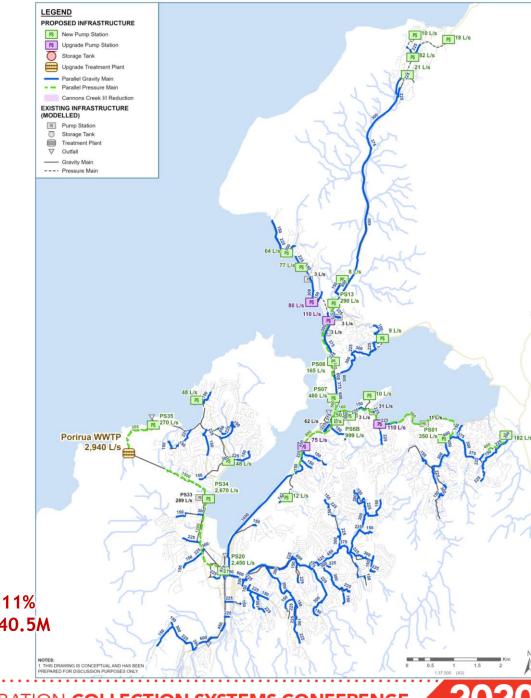
Key Optimization Scenarios Run

- Conveyance-only scenarios
 - 4EY design storm
 - 2EY design storm
 - 1Y design storm
- Composite 2EY/1Y design scenarios 2057 population
 - Conveyance-only
 - All alternatives (conveyance + storage + I/I)
- Additional sensitivity analyses
 - 4EY/1Y All alternatives (2057 population)
 - 2EY/1Y All alternatives (2019 population)

Key Optimization Scenario Results

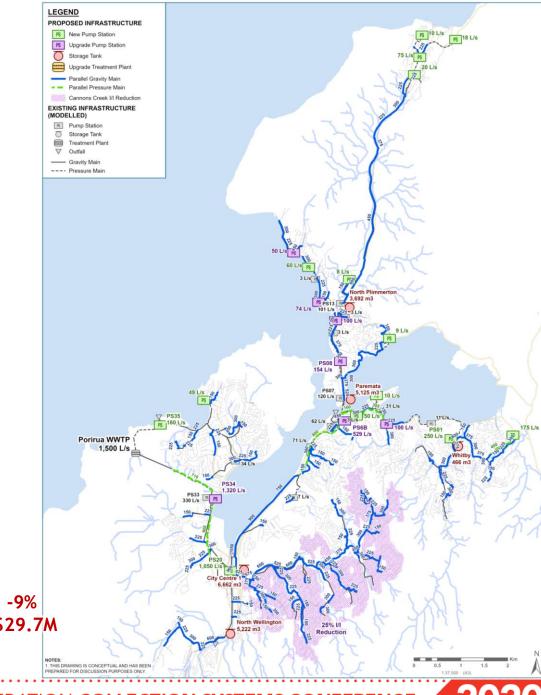
Optimized Master Plan

- 2057 Population Scenario
- 1 uncontrolled SSO per year
- Conveyance Only

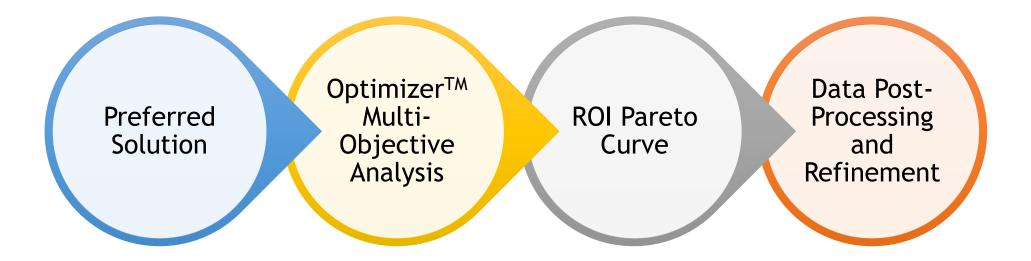

Cost Item	Initial Capital Cost	50-yr PV O&M Cost	50-yr PV Total Cost
Gravity Sewer Upgrades	\$143.8	\$3.9	\$147.7
Pumping Station & Pressure Main Upgrades	\$177.6	\$11.5	\$189.1
Storage Facilities	\$0.0	\$0.0	\$0.0
Treatment Plant Upgrade	\$40.0	\$0.0	\$40.0
Inflow and Infiltration Reduction	\$0.0	\$0.0	\$0.0
Total Capital Cost	\$361.3	\$15.4	\$376.8

Optimized Master Plan

- 2057 Population Scenario
- 2 discharges per year at constructed outfalls and 1 uncontrolled SSO per year
- Conveyance Only

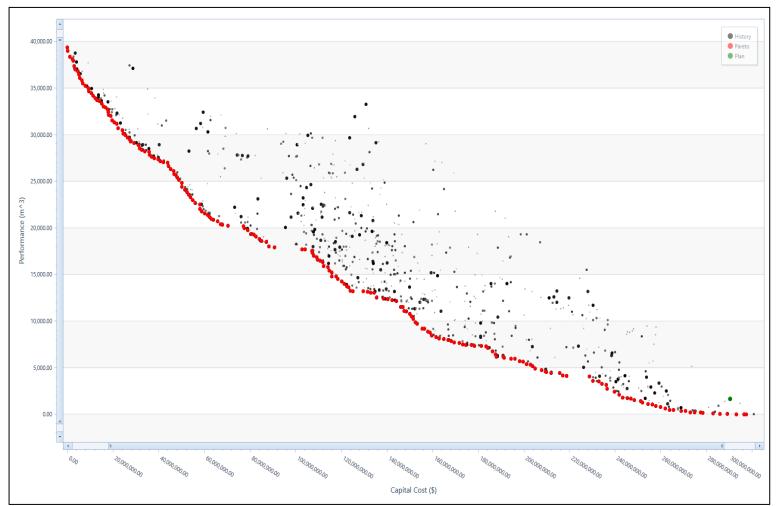

Cost Item	Initial Capital Cost	50-yr PV O&M Cost	50-yr PV Total Cost
Gravity Sewer Upgrades	\$143.2	\$3.9	\$147.0
Pumping Station & Pressure Main Upgrades	\$146.2	\$10.6	\$156.7
Storage Facilities	\$0.0	\$0.0	\$0.0
Treatment Plant Upgrade	\$32.5	\$0.0	\$32.5
Inflow and Infiltration Reduction	\$0.0	\$0.0	\$0.0
Total Capital Cost	\$321.8	\$14.4	\$336.3

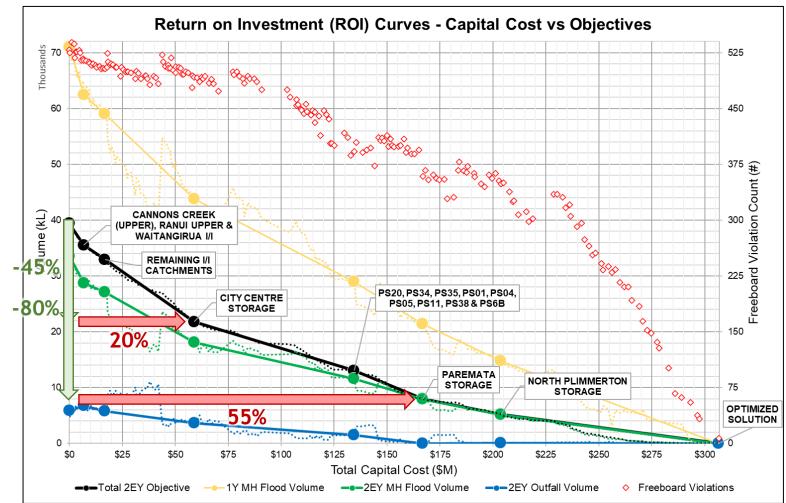
Preferred Master Plan


- 2057 Population Scenario
- 2 discharges per year at constructed outfalls and 1 uncontrolled SSO per year
- All alternatives considered
- Solution remodelled and refined in ICM with 10-year rainfall

Cost Item	Initial Capital Cost	50-yr PV O&M Cost	50-yr PV Total Cost
Gravity Sewer Upgrades	\$132.3	\$3.6	\$135.9
Pumping Station & Pressure Main Upgrades	\$57.3	\$6.9	\$64.2
Storage Facilities	\$88.6	\$2.4	\$91.0
Treatment Plant Upgrade	\$0.0	\$0.0	\$0.0
Inflow and Infiltration Reduction	\$15.5	\$0.0	\$15.5
Total Capital Cost	\$293.7	\$12.9	\$306.6

Prioritization Analysis


• Determine the sequence of project implementation that provides the maximum return on investment (ROI) with respect to improved system performance.

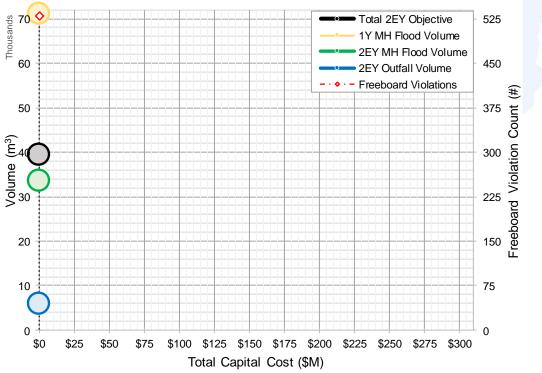

Porirua Prioritized Capital Works Program (Pareto Curve)

 Pareto Curve directly exported from OptimizerTM

Porirua Prioritized Capital Works Program (Refined ROI Curve for Staging Improvements)

- 45% reduction of 2EY SSO volume in first \$60M (20%) of capital expenditure
- 80% reduction in 2EY SSO volume in first \$175 M (55%) of capital expenditure

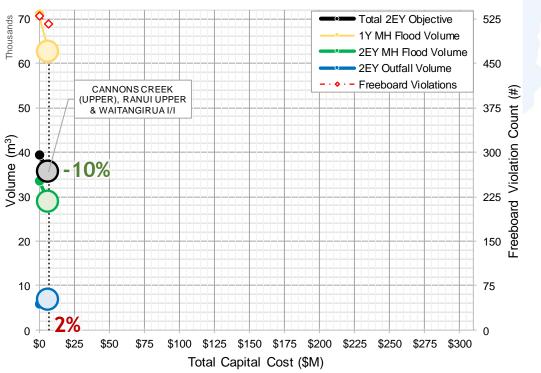
Porirua Prioritization 55,000 Model Evaluations on Cloud Computing Service

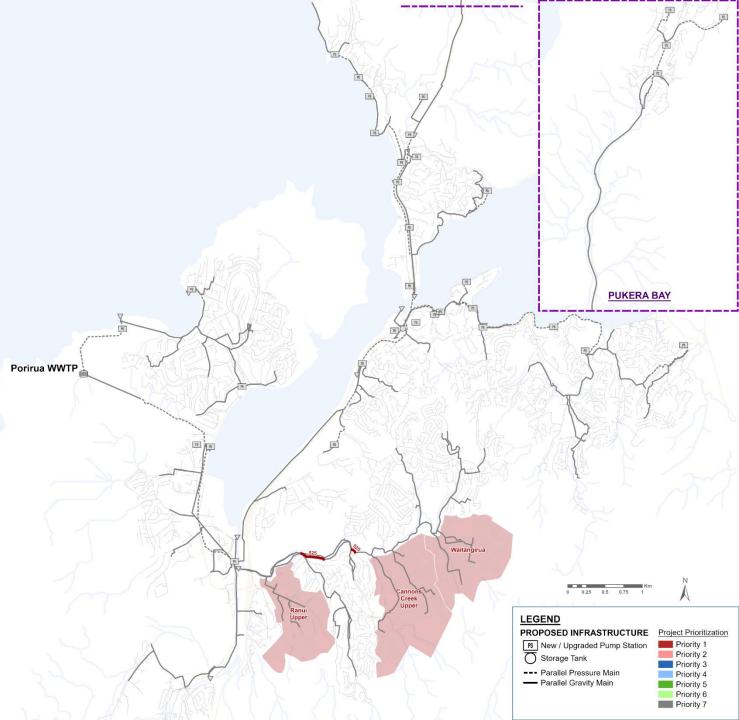

Walk-through of Capital Improvements Identified in each Priority Group

PORIRUA PRIORITIZATION (Existing)

Capital Cost - \$0 M

Cost Item	Cost (\$M)
Gravity Sewer Upgrades	
Pumping Station & Pressure Main Upgrades	
Storage Facilities	
Treatment Plant Upgrade	
Inflow and Infiltration Reduction	
Total Capital Cost	\$0.0
Manhole Flood Volume (2EY Design Storm):	33,500 m3
Outfall Volume (2EY Design Storm):	5,900 m3
Manhole Flood Volume (1-yr Design Storm):	70,996 m3
Freeboard Violations (1-yr Design Storm):	529

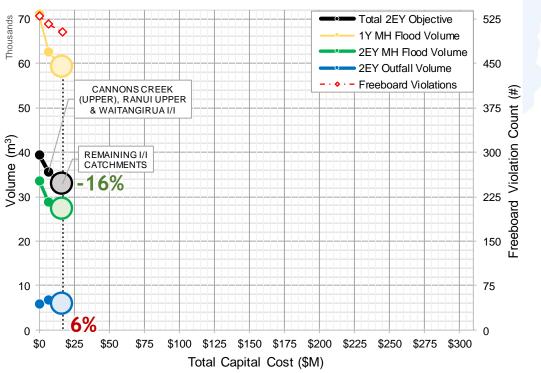


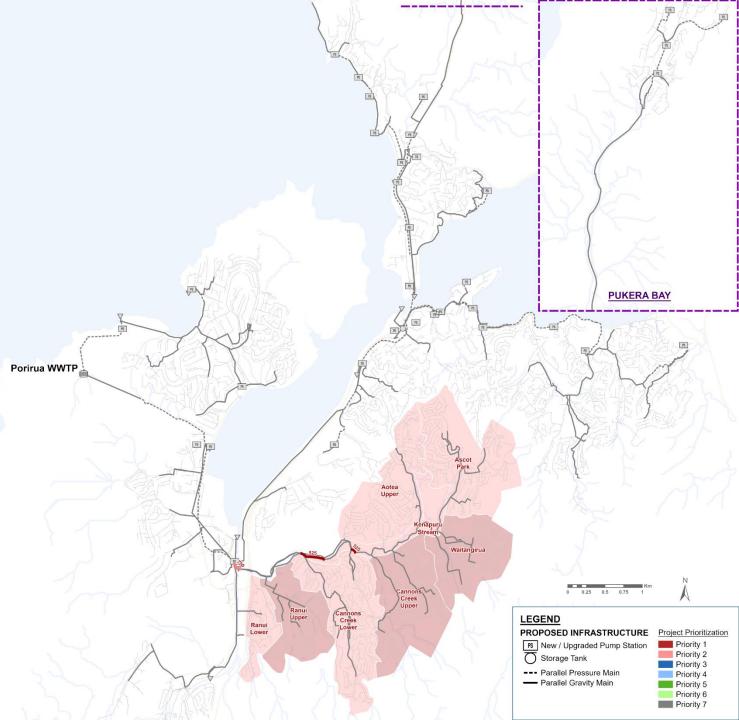


PORIRUA PRIORITIZATION (Priority 1)

Capital Cost - \$6.8 M

Cost Item	Cost (\$M)
Gravity Sewer Upgrades	\$1.1
Pumping Station & Pressure Main Upgrades	
Storage Facilities	
Treatment Plant Upgrade	
Inflow and Infiltration Reduction	\$5.7
Total Capital Cost	\$6.8
Manhole Flood Volume (2EY Design Storm):	28,749 m3
Outfall Volume (2EY Design Storm):	6,754 m3
Manhole Flood Volume (1-yr Design Storm):	62,469 m3
Freeboard Violations (1-yr Design Storm):	515

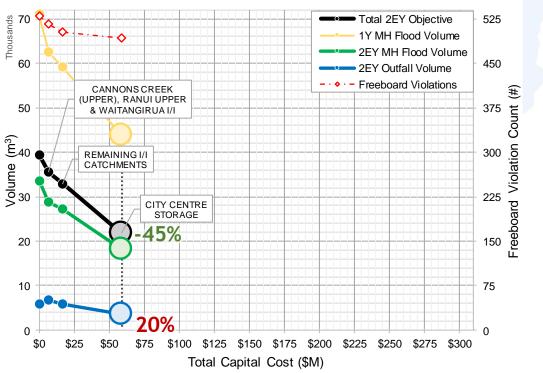


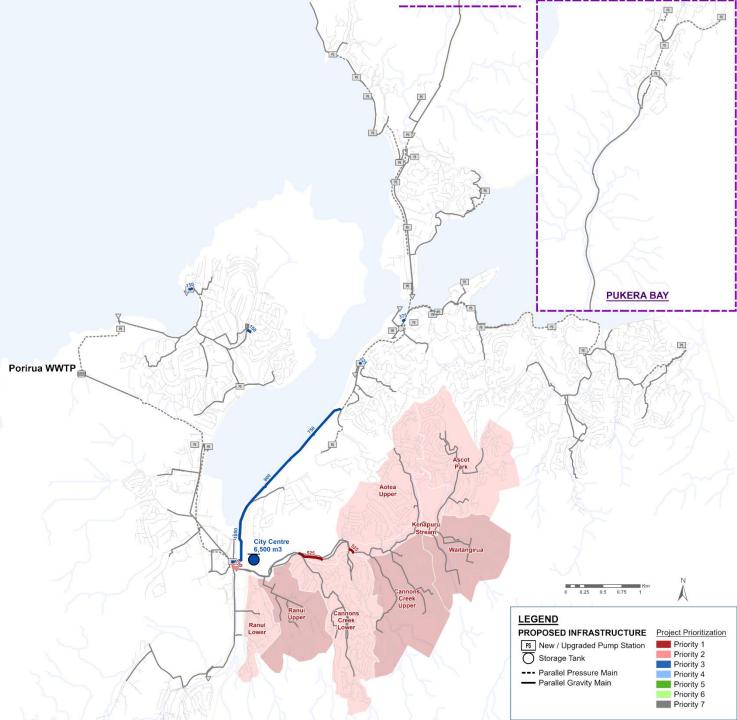


PORIRUA PRIORITIZATION (Priority 2)

Capital Cost - \$17.8 M

Cost Item	Cost (\$M)
Gravity Sewer Upgrades	\$2.3
Pumping Station & Pressure Main Upgrades	
Storage Facilities	
Treatment Plant Upgrade	
Inflow and Infiltration Reduction	\$15.5
Total Capital Cost	\$17.8
Manhole Flood Volume (2EY Design Storm):	27,105 m3
Outfall Volume (2EY Design Storm):	5,805 m3
Manhole Flood Volume (1-yr Design Storm):	59,060 m3
Freeboard Violations (1-yr Design Storm):	503

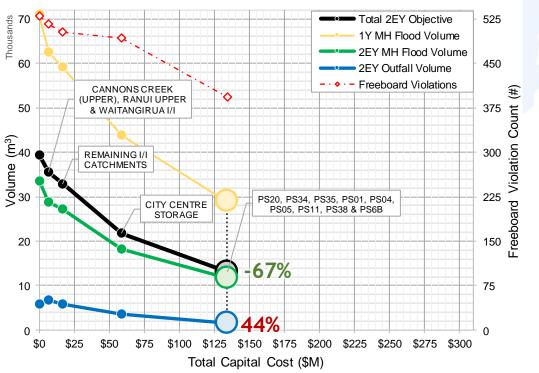


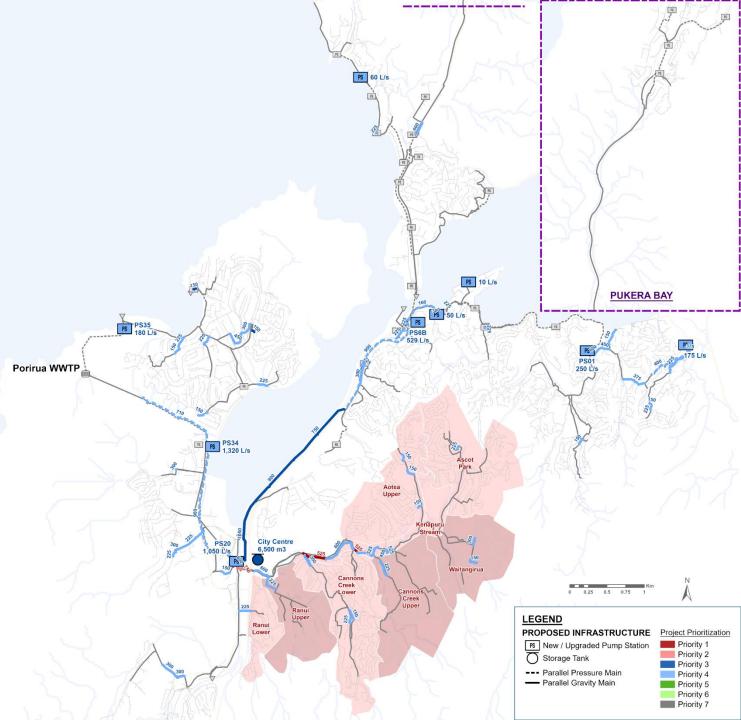


PORIRUA PRIORITIZATION (Priority 3)

Capital Cost - \$57.6 M

Cost Item	Cost (\$M)
Gravity Sewer Upgrades	\$17.7
Pumping Station & Pressure Main Upgrades	
Storage Facilities	\$25.5
Treatment Plant Upgrade	
Inflow and Infiltration Reduction	\$14.4
Total Capital Cost	\$57.6
Manhole Flood Volume (2EY Design Storm):	18,125 m3
Outfall Volume (2EY Design Storm):	3,652 m3
Manhole Flood Volume (1-yr Design Storm):	43,771 m3
Freeboard Violations (1-yr Design Storm):	492

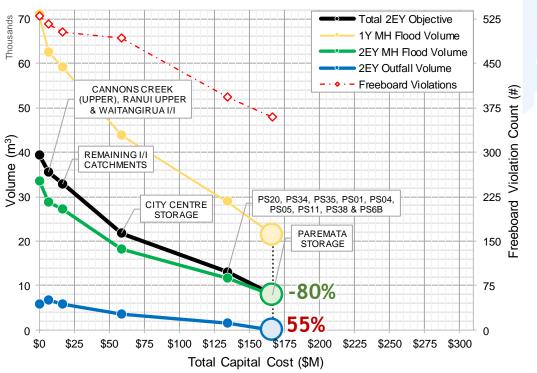


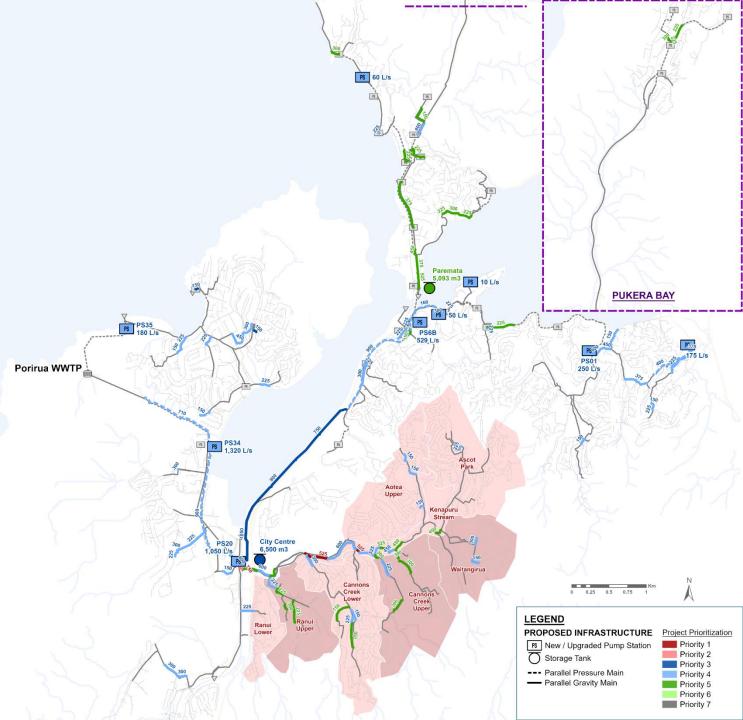


PORIRUA PRIORITIZATION (Priority 4)

Capital Cost - \$128.5 M

Cost Item	Cost (\$M)
Gravity Sewer Upgrades	\$37.9
Pumping Station & Pressure Main Upgrades	\$50.7
Storage Facilities	\$25.5
Treatment Plant Upgrade	
Inflow and Infiltration Reduction	\$14.4
Total Capital Cost	\$128.5
Manhole Flood Volume (2EY Design Storm): Outfall Volume (2EY Design Storm): Manhole Flood Volume (1-yr Design Storm):	11,568 m3 1,483 m3 28,939 m3
Freeboard Violations (1-yr Design Storm):	392

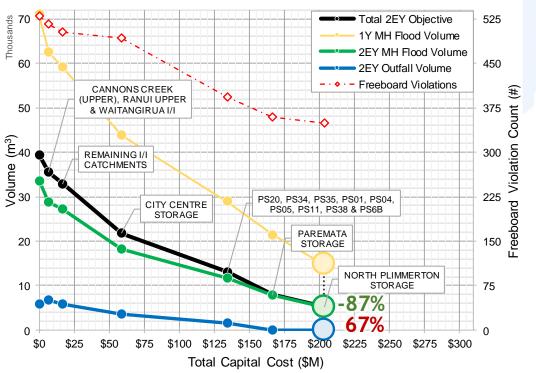


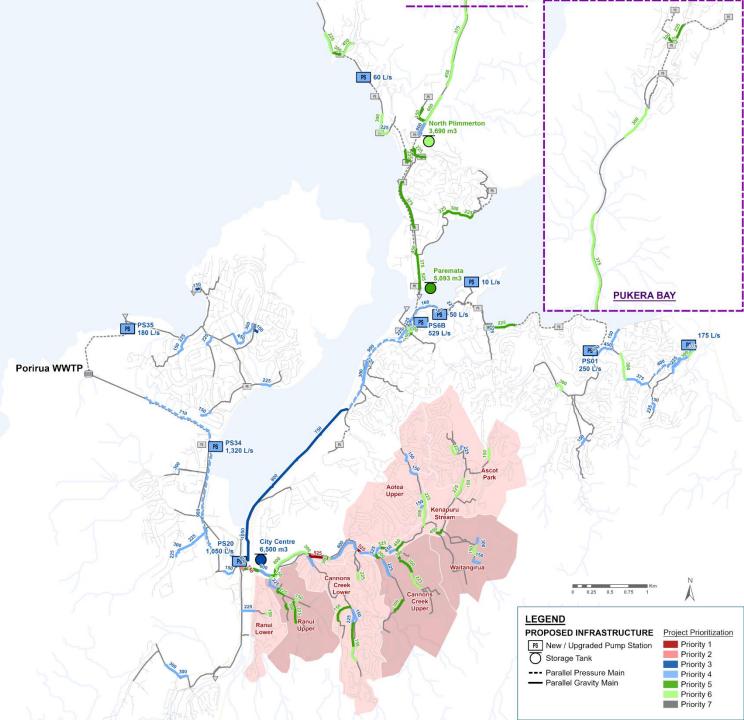


PORIRUA PRIORITIZATION (Priority 5)

Capital Cost - \$160 M

Cost Item	Cost (\$M)
Gravity Sewer Upgrades	\$48.2
Pumping Station & Pressure Main Upgrades	\$50.7
Storage Facilities	\$46.8
Treatment Plant Upgrade	
Inflow and Infiltration Reduction	\$14.4
Total Capital Cost	\$160.0
Manhole Flood Volume (2EY Design Storm):	7,959 m3
Outfall Volume (2EY Design Storm):	12 m3
Manhole Flood Volume (1-yr Design Storm):	21,372 m3
Freeboard Violations (1-yr Design Storm):	359

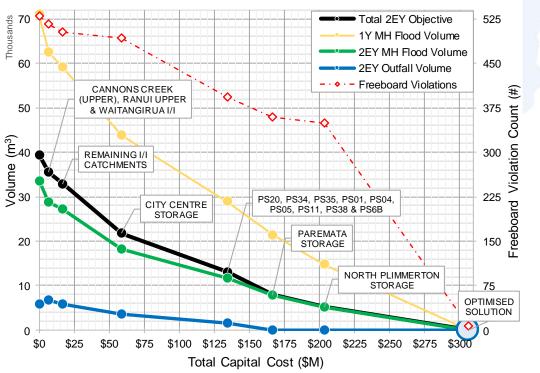


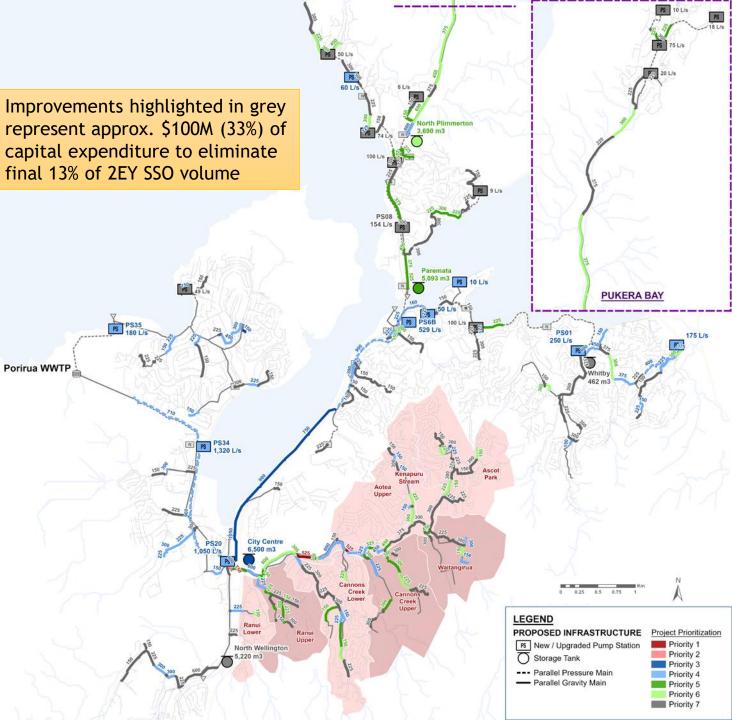


PORIRUA PRIORITIZATION (Priority 6)

Capital Cost - \$195.7 M

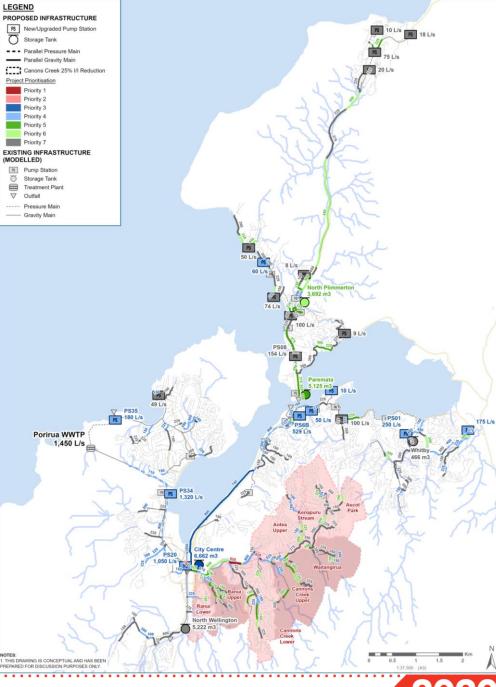
Cost Item	Cost (\$M)		
Gravity Sewer Upgrades	\$67.2		
Pumping Station & Pressure Main Upgrades	\$50.7		
Storage Facilities	\$63.4		
Treatment Plant Upgrade			
Inflow and Infiltration Reduction	\$14.4		
Total Capital Cost	\$195.7		
Manhole Flood Volume (2EY Design Storm): Outfall Volume (2EY Design Storm): Manhole Flood Volume (1-yr Design Storm):	5,130 m3 78 m3 14,762 m3		
Freeboard Violations (1-yr Design Storm):	349		





PORIRUA PRIORITIZATION (Priority 7)

Capital Cost - \$293.7 M


Cost Item	Cost (\$M)		
Gravity Sewer Upgrades	\$132.3		
Pumping Station & Pressure Main Upgrades	\$57.3		
Storage Facilities	\$88.7		
Treatment Plant Upgrade			
Inflow and Infiltration Reduction	\$15.5		
Total Capital Cost	\$293.7		
Manhole Flood Volume (2EY Design Storm):	0 m3		
Outfall Volume (2EY Design Storm):	0 m3		
Manhole Flood Volume (1-yr Design Storm):	0 m3		
Freeboard Violations (1-yr Design Storm):	7		

Prioritized Capital Works Program

	CAPITAL COST (\$M)						
Cost Item	Priority 1	Priority 2	Priority 3	Priority 4	Priority 5	Priority 6	Priority 7
Gravity Sewer Upgrades	\$1.1	\$2.3	\$17.7	\$37.9	\$48.2	\$67.2	\$132.3
Pumping Station & Pressure Main Upgrades				\$50.7	\$50.7	\$50.7	\$57.3
Storage Facilities			\$25.5	\$25.5	\$46.8	\$63.4	\$88.7
Treatment Plant Upgrade							
Inflow and Infiltration Reduction	እካ /	\$15.5	\$15.5	\$15.5	\$15.5	\$15.5	\$15.5
Total Capital Cost	\$6.8	\$17.8	\$58.7	\$129.6	\$161.1	\$196.7	\$293.7
Total 2EY SSO Volume (m ³)	35,503	32,910	21,777	13,051	7,971	5,207	0
% Cost of Preferred Solution	2%	6%	20%	44%	55%	67 %	100%
% Reduction from Existing	10%	16%	45%	67%	80%	87%	100%

Project Outcomes

- A cost-optimal capital works program that meets pragmatic network service targets and provides benefits to the community and environment.
- Increased confidence in capital works program with multiple sensitivity analyses conducted.
- Prioritization results enable Wellington Water to maximize return on its investment as it stages improvements.
- Ability to readily and easily revisit optimization & prioritization of capital improvements as network model is upgraded or re-calibrated in the future.

THANK YOU

Questions?

Andrew Faulkner

2020

Andrew.Faulkner@wcsengineering.com

