

Operation of Activated Sludge Nitrification

Paul Dombrowski, Woodard & Curran, Inc. Spencer Snowling, Hydromantis, Inc.

Water Environr

Webinar Agenda

- Introductions
- Activated Sludge Overview
- Simulator Description and Overview
- Nitrification Theory and Examples
- Simulator Examples
- Hydromantis Project
- Questions

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Water Environment

Secondary Clarifier Impacts on BNR

Two Key Concepts:

- Effluent TSS contains nutrients
- Secondary clarifiers define allowable reactor MLSS
 - High Aerobic SRT required for nitrification
 - As SRT increases for a given reactor volume, MLSS concentration must increase
 - As a result, allowable MLSS can limit SRT

<section-header><list-item><list-item>

Why Remove Nitrogen?

- Toxicity: Ammonia
- Oxygen Demand: Ammonia
- Groundwater Contamination: Nitrate
- Eutrophication: Total Nitrogen
 - Long Island Sound
 - Narragansett Bay
 - Chesapeake Bay
 - San Francisco Bay

Nater Env

Environmental Conditions

- Aerobic
 - Free dissolved oxygen present
- Anoxic
 - No free dissolved oxygen
 - Nitrite and/or nitrate present
- Anaerobic
 - No free dissolved oxygen
 - No nitrite or nitrate

19

<section-header> **Biological Nitrogen Removal**Assimilation Incorporation of nitrogen into cell mass, typically 5% of BOD removed (7-10% of VSS formed) Ammonification Conversion of organic nitrogen into ammonia Nitrification Oxidation of ammonia to nitrite then nitrate Denitrification Reduction of nitrate to nitrogen gas

Activated Sludge Nitrification

- System Microbiology
 - Can occur concurrent or following BOD removal
 - Heterotrophs grow faster than Nitrifiers, so must reduce overall system growth rate
 - Depends on Aerobic SRT
- Single Sludge Nitrification
 - Continuous Flow Systems
 - Sequencing Batch Reactors (SBR)
 - Membrane Bioreactors (MBR)
- Separate Sludge Nitrification

Nitrite "Lock"

- Nitrite-N is an intermediate product of nitrification
- Causes:
 - Low aerobic SRT
 - Low pH
 - NOB toxicity
- Impacts:
 - Chlorine demand (5 mg Cl per mg NO2-N)
 - Disinfection performance problems
 - Effluent toxicity
- Solutions

Water Enviro

Water Environment

Alkalinity Check

- Should maintain at least 50-75 mg/L Alkalinity in Effluent
- Effluent Alkalinity = Alk_{inf} Alk_{nit} + Alk_{denit}
- Alkalinity also consumed through Chemical P Removal
- Chemicals typically used to add Alkalinity:
 - Sodium Hydroxide (NaOH) aka Caustic Soda
 - Sodium Carbonate (Na2CO3) aka Soda Ash
 - Sodium Bicarbonate (NaHCO3) aka Baking Soda
 - Magnesium Hydroxide (Mg(OH)2) aka Milk of Magnesia
 - Potassium Hydroxide (KOH) aka Caustic Potash or Lye
 - Quicklime (CaO)

North Davis Sewer District (NDSD) • Nitrification Study: MLSS 1665 ma/L Average DO in Aeration Tank 0.4 mg/L What are the conditions in 20.0 ft3/s Total Airflow Sludge Production 11.6 ton/d the activated sludge system (DO and SRT)? SRT 5.37 d F/M Ratio 1.6 IbBOD/IbMLSS/d % BOD Removed 97.0 % % TN Removed 53.6 % % NH3 Removed 52.8 % % TP Removed 59.8 %

252100 \$/yr

2562000 \$/yr

Water Environment

Energy Cost

Chemical Cost

 Nitrification Study: How can we increase DO? 			MLSS Average DO in Aeration Tank Total Airflow		1702 mg/L 1.6 mg/L 40.0 ft3/s							
									Sludge Production		11.6 ton/d	
										Effluent Parameters		
Ingrassa Tirflow			BODS 🚰	5.5	mg/L							
increase Airflow				COD 🗖	39.2	mg/L						
Airflow Control		1	- Solids	TSS 🔚	7.3	mg/L						
Total Airflow to Basins 4,5 🎦	400	ft3/min	Nitrogen Variables	Ammonia 🖂	8.7	med						
Total Airflow to Basins 1-3,6-8 🚰	800	ft3/min		Nitrite 🔄	0.7	mg/L						
				Nitrate 🖂	2.8	mg/L						
Airnow Control		617 (m/r		TN 🖾	14.1	mg/L						
Total Airflow to Basins 4,5	800	it3/min	Phosphorus	uble Photohorus								
	1600	ft3/min	50		3.35	mgP/L						

	SRT	5.5 d		
Nitrification Study:	F/M Ratio	1.6 lb BOI	D/IbML	.SS/d
How can we increase SRT?	% BOD Removed	97.5 %		
	% TN Removed	47.1 %		
	Effluent Parameters			
	Organic Variables BODS E 5.4 mg/L COD E 39.1 mg/L		mg/L	
Decrease WAS			mg/L	
	Solids	TSS 🖂	7.3	ma/L
Aeration WSS Pumping Aeration WSS Flow P 0.999 MGD(US)	Nitrogen Variables			land er eiten l
		Nitrite	7,4	mg/L
		Nitrate 🖂	4.3	mg/L
		TN 🔁	14.7	mg/L
	Phosphorus Soluble P	hosphorus 🖂	1.15	moD/I
	Total P	hosphorus 🖂	3.83	moP/L

North Davis Sewer District (NDSD) 10.4 d SRT • Nitrification Study: F/M Ratio 0.6 lbBOD/lbMLSS/d • How can we increase SRT? % BOD Removed 98.0 % % TN Removed 47.8 % Effluent Parameters Organic Variables 80D5 🔁 4.4 mg/L **Decrease WAS** COD 🖂 39.0 mg/L Solids TSS 🔄 8.7 mg/L Aeration WSS Pumping Nitrogen Variables 0.999 MGD(US) Aeration WSS Flow Ammonia 🔁 1.9 mg/L Nitrite 🔛 0.2 mg/L Aeration WSS Pumping Nitrate 🔂 10.1 mg/L 14.5 mg/L Aeration WSS Flow 0.4 MGD(US) Soluble Phosphorus 🚰 3.38 mgP/L Total Phosphorus 🖻 3.9 mgP/L Water Environment Federation

