

Our Next Speaker

Patrick Dunlap, MS, PE Process Engineer Denver CO

Water Environm Federation

Chemical Species for Phosphorus Precipitates

		CaHPO2HaO
Mg	Fe ⁺² or Fe ⁺³	Ca ²⁺
NH ₄ ⁺	PO ₄ -3	PO ₄ ⁻³ or HPO ₄ ⁻²
PO ₄ -3		

Concentrations in Solids Streams

- Several factors impact concentrations of chemical species in solids streams
 - Efficiency Thickening prior to digestion
 - Thermal hydrolysis process included?
 - WASSTRIP
 - Chemical type and addition points for phosphorus removal

% solids - 4, 5, 6, etc.

increased digestion and higher orthophosphate

Orthophosphate extracted from WAS before sent to digesters

Water Environn Federation

Iron, aluminum, cerium; Primary clarifier, aeration basins, secondary clarifiers

pH & Temperature					
Location in Wastewater Treatment Plant	рН	Temperature			
Liquid Processes (raw influent, primary clarifiers, aeration basins, etc.)	6.7 to 8	10 to 25°C			
Solids Processes (thickening, digestion, dewatering, phosphorus release, etc.)	6.5 to 7.5	35 to 55°C			
		Water Enviro Federation The water quark	onme n'		

Conditions Leading to Phosphorus Precipitation

Struvite

- Excess concentrations of Mg⁺², NH₄⁺, and PO₄⁻³
- Increased pH of solution
- Turbulence
- Stripping of CO₂
- Rough surfaces

Fe-phosphates

- Excess iron and PO₄-3 concentrations
- Lower pH conditions
- Elevated temperatures

Nater Env

Recovery Options

- Can be recovered in all three forms
 - Struvite (magnesium-based)
 - Brushite or hydroxyapatite (calcium-based)
 - Vivianite (iron-based)
- Recovery as struvite is the most common
 - Commercial recovery methods available for Ca-P

Water Environ

Recovery as Fe-P is still in research stage

P-recovery Economics				
	Struvite	Calcium phosphates		
Recovery	80 to 90%	50 to 100%		
Capital costs	\$28 to \$280 per ton per day	\$3.5 to \$4.5 per ton per day		
Market value	\$50 to \$1,800 per ton	n/a		
1 ton = 2,000 lb				
Source: Vaneeckhaute, C. Nutrient recovery from di Valorization, 8(1), 21-40.	., Lebuf, V., Michels, E., Belia, E., Vanrolleghem, P. gestate: systematic technology review and product	A., Tack, F. M., & Meers, E. (2017). t classification. Waste and Biomass		
		Water Environm Federation		

Conclusions

- P-recovery can minimize impacts on downstream unit processes, e.g. digester, dewatering equipment
 - May still require chemical addition to control struvite in digesters
- Several commercial Precovery options are available

Water Environ Federation

Lander Street primary digester Simulation of mitigation strategie						
			Fe for struvite control			
it Data	Model	– 25 a FeCl₂/ka VSS	100 g FeCl₂/kg VSS			
1.70%	2.10%	2.15%	2.24%			
f TS 67%	66%	65%	62%			
7.15	7.16	7.07	6.80			
/L 4100	3544	2939	1762			
³ /hr 176	172	174	178			
n 2125	1926	141	4			
N/L 1169	979	978	1018			
P/L 156	166	113	2			
TSS/L ?	842	827	37			
TSS/L	0	578	2488			
TSS/L	0	146	163			
	it Data 1.70% f TS 67% 7.15 /L 4100 ³ /hr 176 n 2125 N/L 1169 P/L 156 TSS/L ? TSS/L TSS/L	it Data Model 1.70% 2.10% f TS 67% 66% 7.15 7.16 /L 4100 3544 3/hr 176 172 n 2125 1926 N/L 1169 979 P/L 156 166 TSS/L 0 355/L	it Data Model gFeCl ₃ /kg VSS 1.70% 2.10% 2.15% fTS 67% 66% 65% 7.15 7.16 7.07 /L 4100 3544 2939 3/hr 176 172 174 n 2125 1926 141 N/L 1169 979 978 P/L 156 166 113 TSS/L 0 578 TSS/L 0 146			

Conclusions on a comprehensive model

- Optimisation of mitigation strategies
- Impact of mitigation strategies
 - On return streams and mainstream processes

Water Environ Federation

On digestate chemical composition

What do we know

- Dewatering performance varies in general
- Increase digester PO₄-P correlates with decline in dewaterability
- Removal of PO₄-P increases dewaterability
- Increase MV/DV ratio correlates with decline in dewaterability

Water Environ Federation

• Ferric (usually) Increases Dewatering Performance

EBPR and Dewatering

- Bio-P Transfer P to digester and Mg and K
- Mg²⁺ Precipitates out as MgNH₄PO₄ 6H₂O

Monovalent/Divalent Cation Ratio (M/D)

• Divalent Cation Bridging

93

<section-header><section-header><list-item><list-item><list-item><list-item>

Metal Salt Addition

- Simplest Option
- Ferric or Alum
- Recycle P control
- Lower polymer demand
- Dryer cake
- More sludge
- Consumes alkalinity*

CTHP (PONDUS)

- Chemical/Thermal Hydrolysis
- Simple Process
- 80% 90% as effective as THP

Key Takeaways

- EBPR decreases dewaterability
- Often occurs under the radar
- Struvite = indicator for EBPR
- There are mitigation options

113

Water Environ

