

Today's Moderator

John B. Copp Ph.D. Primodal Inc. Hamilton, Ontario

Nutrient Removal – Oct. 29, 2020

An MRRDC Short Course:

Biological Nutrient Removal: Tools, Tips and Lessons Learned

- Topics:
 - Instrumentation Use for BNR
 - BNR Instrumentation Consultant's Perspective
 - Case Studies
 - BNR Small Communities
 - BNR Operation with Instrumentation

5

Nutrient Removal - Oct. 29, 2020

An MRRDC Short Course:

Biological Nutrient Removal: Tools, Tips and Lessons Learned

Ben Barker Xylem

Rob Smith Black & Veatch

Vandommelen EPA – Ohio

Shaun Thompson Colorado Springs

Benjamin Barker
YSI Applications Engineer
benjamin.barker@xyleminc.com

7

Biological Nutrient Removal and Instrumentation Overview

Why is nutrient removal important?

- · Excess nutrients are harmful to the environment
- They can lead to eutrophication in rivers, lakes and estuaries
 - Oxygen dead zones
 - Fish kills
 - Harmful Algal Blooms (HABs)
- Water Resource Recovery Facilities (WRRFs) are required to remove nutrients from wastewater

q

How are nutrients removed?

Biological Nutrient Removal (BNR)

- <u>Definition:</u> The removal of nitrogen and phosphorus by the use of, proliferation and selection of certain microbial populations ("bugs")
- Different wastewater processes create the proper environment to select and enhance the growth of the desired bacteria
- · Example: Aerobic, anoxic, and anaerobic environments
- These wastewater processes are arranged in many different configurations to achieve the desired treatment

Aerobic Zone The aerobic zone (oxic) provides an oxygen-rich environment for which nitrifying bacteria can proliferate Nitrite NO₂ Ammonium NH₄ Nitrificatio

Aerobic Zone

- The aerobic zone (oxic) provides an oxygen-rich environment for which nitrifying bacteria can proliferate
 - Nitrosomonas: NH₄⁺ to NO₂⁻
 - Nitrobacter: NO₂⁻ to NO₃⁻
- In most BNR configurations, aerobic zones will follow anoxic and anaerobic zones
- Aeration is provided by blowers/diffuser systems or mechanical aerators

13

Anoxic Zone

• The anoxic zone provides a low-oxygen environment with nitrate (NO_3 -) still present as the source of oxygen

Anoxic Zone

- The anoxic zone provides a low-oxygen environment with nitrate (NO₃-) still present as the source of oxygen
- Pseudomonas: NO_3^- to N_2
- Anoxic zones require a carbon source (BOD)
- No aeration, but mixing is still required (submersible or vertical mixers, big bubble mixer systems)

15

Angerobic Zone

- The anaerobic zone provides a very low oxygen and low-nitrate environment
- The primarily used in BNR systems for biological phosphorus removal
- Two step process in which phosphorus accumulating organisms (PAOs) go through an anaerobic zone, followed by an aerobic zone

Requirements for Activated Sludge

Microorganisms ("bugs")

· Community of different microbes and bacteria

• Food

· Organic matter (BOD) or any carbon source

Oxygen (or no oxygen)

- · Oxygen is required nitrification
- · Low oxygen environment is required for denitrification

Proper mixing

- · Sufficient mixing maintains a suspended floc and uniform environment
- Dependent on process, some require varying levels of mixing

Solids Management

- · Control for how many microorganisms are present
- Return Activated Sludge and Waste Activated Sludge

19

Process Parameters

MLVSS

- Mixed Liquor Volatile Suspended Solids
- · How many bugs do we have in the system?

F:M Ratio

- · Food to microorganisms ratio
- Food = BOD: Microorganism = MLVSS
- Do we have the right amount of bugs in the system for our incoming food?

SRT

- Solids Retention Time (days)
- Are we allowing the appropriate amount of time for the bugs to reproduce to maintain their population?

· Is our sludge in good condition? How well does it settle?

Water Environment Federation

Enhanced Biological Phosphorus Removal Aerobic Phase Do and PHB metabolized for Energy Energy used for Luxury Phosphorus Uptake Polyphosphate

Enhanced Biological Phosphorus Removal

Anaerobic Zone (DO)

B

(Günther et al, 2009)

BNR Process Configurations

- Wuhrman
- Ludzack-Ettinger
- Modified Ludzack-Ettinger
- Step-Feed A/O
- Simultaneous Nit/Denit

- Four-Stage Bardenpho
- Five-Stage Bardenpho
- A₂/O (Anaerobic, Anoxic, Oxic)
- A/O (Anaerobic, Oxic)
- Deammonification

And many more!

(EPA, 2013)

29

Take-Home Points

- Excess nitrogen and phosphorus causes eutrophication in estuaries and coastal ecosystems, having an adverse effect on the ecosystem. Removing nitrogen from wastewater can help mitigate these effects.
- Biological Nutrient Removal (BNR) is an activated sludge process that requires careful control of the
 environment to encourage nitrification, denitrification and P-uptake, resulting in the removal of
 nutrient removal.
- Selecting the correct BNR configuration for your facility and careful monitoring and control with online
 instrumentation will lead to efficient and effective nutrient removal.

Contact Information:

Benjamin Barker

YSI Inc, a Xylem brand

Benjamin.barker@xyleminc.com

31

Rob Smith
Process Engineer
Black & Veatch

BNR Monitoring System Design

33

Topics

- Considerations for Specifying a BNR Process Monitoring System
- Phosphorus Removal
- Nitrogen Removal

Keep Your Specs Up to Date

- Sensor type (measurement principle)
- Outputs and communications
- Environment
- Local interface
- Sample conditioning / delivery

35

Phosphorus Removal

37

Ortho-Phosphate

- Technologies: Wet chemistry analyzer
- Usually requires a filter
- Total Phosphorus (TP) not usually necessary for control

Oxidation Reduction Potential (ORP)

• Technologies: 2 electrodes vs. 3 electrodes

39

Total Suspended Solids

- Optical
 - Versatility
 - Cost
- Microwave
 - Large measuring range

Dissolved Oxygen

- Electrochemical
 - Faster response
 - Larger range
- Optical
 - Simple operation

47

Ammonia-Nitrogen

- ISE (probe)
 - Large measuring range
 - Fast response time
- Wet chemistry analyzer (cabinet)
 - Low concentration measurement*

Nitrate-Nitrogen

- ISE (probe)
- · Wet chemistry analyzer
- Optical (probe)
 - Simple operation

Water Environment Federation the water quality people"

49

Ammonia Based Aeration Control (ABAC) Example Setpoints Low DO, High DO, 3. Valve position 2. D.O. reading determines 1. Ammonia reading mg/L impacts system valve position determines D.O. setpoints 0.3 0.3 press A2 0.5 0.5 Pressure Gauge 0.9 1.5 Ammonia Monitoring 1.7 Flow Meter D.O. Sensor System Target NH₄

How Low is Too Low?

1.30 Grant State of the Control of the Contro

55

Troubleshooting BNR Systems in Small Communities

Causes of Noncompliance in Small BNR Systems:

- 1) Small system operators are not trained very well to run BNR systems
- 2) Small systems typically do not have their own labs to run process control tests
- 3) Small systems are designed using textbook characteristics for influent waste streams
- 4) Small systems often suffer from inadequate soluble carbon that drives denitrification and orthophosphate release reactions

Today, we will look at a small community

- That abandoned one wastewater treatment plant
- Constructed a new BNR wastewater treatment plant
- Suffered from nearly random compliance for 4 years
- Then reached out to the Compliance Assistance Unit to visit their BNR system.

57

Troubleshooting BNR Systems in Small Communities

Date Range	Monthly Average Reported	Compliant	% Compliant	Noncompliant	% Noncompliant
Jan 2014 to Mar 2018	51	11	21.6	40	78.4

67

Troubleshooting BNR Systems in Small Communities

Location	COD	NH3-N	N03-N	P04-P
Standard (300 mg/L)	299			
Influent	190	19.0		1.27
Anaerobic Tank	119	4.5	11.9	1.01
Anoxic Tank	113	0.1	14.6	0.99
Oxic Tank		0.02	14.7	0.99
Final Effluent	99	0.09	13.9	0.79
RAS			14.2	

Note all samples are grab samples (Samples run on 3/15)

Nitrate Profile
(mg/L)

	KAS	Anaerobic	Anoxic
3/15/2018	14.3	11.9	14.6
→→ 3/19/2018	8.7	12.5	11.9
3/20/2018	11.6	7.9	11.8
3/21/2018	11.5	7.5	12.0
3/22/2018	8.6	8.2	11.1

Water Environment Federation

69

Troubleshooting BNR Systems in Small Communities

Too much Nitrate everywhere

Solution: Manage the Nitrates

Solution: Manage the Nitrates

- 1) Closed the nitrate recycle gate completely
- 2) Run vertical rotor at 38 Hertz
- 3) Turned 2nd Anaerobic Zone Mixer OFF for 3.5 hours, ON for 30 minutes
- 4) Turned Anoxic Zone Mixer OFF for 3.5 hours, ON for 30 minutes
- 5) Profile Ammonia, Nitrate, and Orthophosphate in each zone

71

Troubleshooting BNR Systems in Small Communities

Water Environment Federation

03 188 mg/l Cl 10.8 °C ANX Cl 04 4.6 mg/l NH4-N 10.7 °C ANA NH3 05 2.1*mg/l NO3-N 10.7 °C ANA NO3	01	3.0*mg/l	NH4-N	10.8 ℃	ANX NH3
04 4.6 mg/l NH4-N 10.7 °C ANA NH3 05 2.1*mg/l NO3-N 10.7 °C ANA NO3	02	1.9 mg/l	NO3-N	10.8 °C	ANX NO3
05 2.1*mg/l NO3-N 10.7 °C ANA NO3	03	188 mg/l	d	10.8 ℃	ANX CI
	04	4.6 mg/l	NH4-N	10.7 °⊂	ANA NH3
06 8.7 mg/l K 10.7 °C ANA K	05	2.1*mg/l	NO3-N	10.7 °C	ANA NO3
	06	8.7 mg/l	К	10.7 °C	ANA K

Troubleshooting BNR Systems in Small Communities

First April sample was high (1.25 mg/L), but the rest of the samples brought the monthly down to 0.66 mg/L

Alum feed was shut down 5/2

May 2018 another consecutive month of compliance for TP

In addition, the village was spending \$800 - \$1200/month for alum previously.

Electricity demand should also be reduced due to mixer turndown

Digester Nutrient Profile

Ammonia Nitrogen	Dilution	Nitrate Nitrogen	Dilution	Orthophosphate	Dilution
Nondetect	(1:4)	504 mg/L	(1:20)	220 mg/L	(1:200)

Water Environment Federation

81

Troubleshooting BNR Systems in Small Communities

Date Range	Samples	Compliant	% Compliant	Noncompliant	% Noncompliant
Jan 2014 to Mar 2018	51	11	21.5	40	78.4
Apr 2018 to Sep 2020	30	26	86.7	4	13.3
Overall	81	37	45.7	44	54.3

83

Troubleshooting BNR Systems in Small Communities

Keys to BNR:

Process Control!

- 1) Monitor the nutrients in the Inputs to each zone
- 2) Monitor the nutrients in Internal Recycles (Digester Supernatant)
- 3) If the Chemistry is correct in the zones, the bacterial response will be compliant.
- 4) Know the chemical environment in each zone of the WWTP.

jon.vandommelen@epa.ohio.gov

614-580-5069

85

Using Technology for Operations in Wastewater Treatment

87

Wastewater Treatment- Post Collection System

LVSWRRF

JDPWRRF

CSRRRF

Water Environment Federation the water quality people"

JDP Resource Recovery Facility

Water Environment Federation the water quality people'

89

Real-Time Monitoring (JDPWRRF)

- Parameters
 - Ammonia
 - ORP
 - · DO
 - NitrateNitrite
 - · COD

- BOD
- · TSS
- Phosphorus
- pH
- NTU
- UVT

Water Environment Federation

Ammonia Control

- Advantages
 - 1. Energy cost savings with reduced blower operation
 - 2. Lower TSS due to flock shear reduction
 - 3. Direct control instead of theoretical control
 - 4. Reduced effects of plant upsets with automatic immediate response from ammonia control system

93

Las Vegas Street Water Reclamation Facility

95

Seeing an
Unexpected
BOD Load with
Instrumentation

Shthompson@csu.org

719-668-3609

103

Nutrient Removal - Oct. 29, 2020

An MRRDC Short Course:

Biological Nutrient Removal: Tools, Tips and Lessons Learned

Final Q & A:

Moderator→John CoppPrimodalPrinciples→Ben BarkerXylem

Instrumentation → Rob Smith Black & Veatch

Application → Jon Vandommelen EPA - Ohio

Application → Shaun Thompson Colorado Springs Utilities

