

Today's Moderator John B. Copp Ph.D. Primodal Inc. Hamilton, Ontario Primodal Earth Essential Technologies

Ops Modeling – Aug. 23, 2018

An MRRDC Webcast Modeling for Operations

- Topics:
 - Introduction to Modeling for Operations
 - Model Features
 - Operations Case Studies

Ops Modeling – Aug. 23, 2018

An MRRDC Webcast Modeling for Operations

• Speakers:

Spencer Snowling Hydromantis

Adrienne Menniti Clean Water Services

Lina Belia Primodal

Jared Buzo Oakland

County, MI

George Sprouse Metropolitan Council

Our Next Speaker

Spencer Snowling, Ph.D V.P., Product Development

Introduction to Modelling as an Operational Tool

Agenda

- Introduction to Wastewater Models
- Modelling and Simulation as a Wastewater Engineering Tool
- Typical Applications

Activated Sludge Modeling

 Activated Sludge Models (ASM) have been a standard tool for wastewater process design for three decades

Activated Sludge Modeling

 Based on mass balance of COD, nitrogen, phosphorus and other components

Activated Sludge Modeling

- Requires data from the plant:
 - Tank sizes, clarifier surface areas, depths
 - Operational settings (aeration, RAS, WAS)
 - Influent information (flow, concentrations)
 - Performance data (effluent quality)
- Models have to be calibrated to known plant performance

Activated Sludge Modeling

 Once calibrated, models allow us to predict the concentrations throughout the water resource recovery facility (WRRF)

History of Activated Sludge Models

ASM1, ASM2d, ASM3 defined the original model structure

IWA Scientific and Technical Report No. 9

Activated Sludge Modeling

- Model can "stand in" for the real system when it's not feasible for testing:
 - Too risky (compliance concerns)
 - Physically not possible (e.g. retrofits)
 - Operationally not possible (bypass/splits)
 - Cost
 - Physical conditions (e.g. storms)
 - Time (I need an answer now!)

Why Use Simulation?

- Models are usually cost-effective first steps to implementing change
- Gives a degree of confidence that decisions are supported with data and analysis

Typical Applications

- Engineering design assistance:
 - Using the model to check/confirm designs
 - Optimization of tank and clarifier sizes

Typical Applications

- Trouble-shooting and optimization:
 - "What if" scenario analysis
 - Operating cost optimization (energy, chemicals)

Typical Applications

- Planning:
 - Taking units out of service
 - Risk analysis

Typical Applications

- Operator training and education:
 - Interactive simulation-based education
 - WEF Operations Challenge competition

Conclusions

 The traditional IWA model structure (ASM1, ASM2d, etc.) has extended beyond its original design origins to be used for operational decision-making, planning and training

Our Next Speaker

Adrienne Menniti
Senior Process Technologist

Survey to understand how models are used at utilities

- Performed by Models for Operations Task Group
- Phone interviews
- 22 U.S. utilities
- 33 medium and large facilities
- Results presented:
 - 2014 WEFTEC workshop
 - September 2015 WE&T article

 Belia et al. (2015) The evolution of a proven tool: Adapting process models for operations staff. WE&T, 27(9), 65-69.

Common barriers for model implementation at utilities

- 1. Time and funding
- 2. Staff familiarity and training
- 3. Confidence in model predictions
- 4. Data collection and management

Challenge: Time and Funding

Model-related tasks are time consuming.

Utilities need to understand the level of investment required to produce desired outcomes

All levels in organization find value/support One or more positions have key model-focused deliverables Manager Manag

Solutions: Time and Funding

Case studies with time/costs more accessible

Utility	Typical Internal Hours/Week	Yearly External Support Contract
Clean Water Services, OR	8 - 16	\$30,000
Trinity River Authority, TX (internally maintained model)	16	
Trinity River Authority, TX (consultant maintained model)		\$20,000
City of Raleigh Public Utilities, NC	8	
Metropolitan Council Environmental Services, MN	8 - 20	\$5,000 (staff training by software vendor)
Ontario Clean Water Agency, ON	4 - 6	

Challenge: Staff familiarity/training

Process modelling requires a specialized skill set that is not typically required of today's operations staff

Solutions: Staff familiarity/training

Hire experienced staff → process engineer

Consultant or developer support

Utility	Internal	Internal & External	External
Clean Water Services, OR		Χ	
Trinity River Authority, TX	Х		
City of Grand Rapids, MI			Χ
Oakland County, MI		Х	
City of Raleigh Public Utilities, NC	Х		
Howard County Little Pantunxent WWTF, MD		Х	
Metropolitan Council Environmental Services, MN		Х	
Ontario Clean Water Agency, ON	Х		

Solutions: Staff familiarity/training

Build from operations challenge

Incorporate models into operator training programs

Use model for routine operations tasks

What should my wasting rate be?

Challenge: Confidence in predictions

Skepticism of the model predictions can hinder model transition from engineers to operators

Solutions: Confidence in predictions

Structured documentation program → reports

Ongoing maintenance program

Challenge: Data

Collecting, organizing, validating and transferring the data needed for routine model use is time-consuming and

cumbersome

Adapted from

Hauduc et al. (2009) Activated sludge modelling in practice - an international survey. WS&T 61(4) 1943. Rigger et al. (2013). Guidelines for using activated sludge models. IWA STR No. 22

Solutions: Data

Acknowledged importance of data quality and organization

Custom developed tools

Rigorous data management approaches

Conclusion

Utilities are increasingly investing in process modelling programs

Sharing lessons and resources amongst utilities is valuable and encouraged

Our Next Speakers

Jared Buzo, P.E.
Oakland County, Michigan

Evangelina Belia, Ph.D., P.Eng.

Primodal Inc. US & Canada

Primodal

Whole Plant Modeling of the Clinton River WRRF: Creating and Using a Model for Practical Applications

Clinton River WRRF

Influent

Primary Effluent

Mixed Liquor

Secondary Effluent

Final Effluent

Agenda

- Introduction to the Clinton River WRRF
- Model Initiation
- Model Training/Strategy
- Continued Use
- Summary

Plant effluent limits

Parameter		uantity o	Limits for r Loading Daily			iximum L lity or Co 7-Day			Monitoring Frequency	
Flow	(report)	_	(report)	MGD					Daily	Report Total Daily Flow
Carbonaceous Biod	chemical Ox	ygen Den	nand (CBC	DD ₅)						
May 1 - Nov 30	1000	2600		lbs/day	4		10	mg/i	Daily	24-Hr Composite
Dec 1-Mar 31	4300	6600		lbs/day	17		26	mg/l	Daily	24-Hr Composite
Apr 1 - Apr 30	2000	3100		lbs/day	8	-	12	mg/l	Daily	24-Hr Composite
Total Suspended S	olids									
May 1 - Nov 30	5100	7700		ibs/day	20	30		mg/l	Daily	24-Hr Composite
Dec 1-Mar 31	7700	11000		lbs/day	30	45		mg/l	Daily	24-Hr Composite
Apr 1 - Apr 30	6100	9200		lbs/day	24	36	_	mg/l	Daily	24-Hr Composite
Ammonia Nitrogen	(as N)									
May 1 - Nov 30	130	510		lbs/day	0.5		2	mg/l	Daily	24-Hr Composite
Dec 1-Mar31	1500	3600		lbs/day	6.0		14	mg/l	Daily	24-Hr Composite
Apr 1 – Apr 30	920	1200	_	lbs/day	3.6		4.6	mg/l	Daily	24-Hr Composite
Total Phosphorus (a:	s P) 210			lbs/day	0.82			mg/l	Daily	24-Hr Composite
Fecal Coliform Bact	eria				200	400		ct/100 ml	Daily	Grab
Total Residual Chlo	rine				2		0.038	mg/l	Daily	Grab

Model Initiation

- Model created as part of a larger project
 - Immediate beneficial results
 - Catalyst to complete the model
- Able to utilize SAW Grant Funding

Model Initiation Project

- · Capacity Evaluation
 - Increased load and wet-weather capacity evaluation
 - Wet-weather scenarios based on actual plant data profiles that included:
 - the maximum flow seen for 24 consecutive hours the maximum flow seen for 30 consecutive days
 - "Stress" profile developed and progressively increased until one or more processes operating at limit

Model-based Capacity Evaluation

- Primary tanks performance evaluation
- Nitrification (shorter HRT)
- Final clarifier performance evaluation
- Impact of sludge processing bottleneck (storing sludge)
- Tertiary filters not evaluated

Model Training/Strategy

- After initiation 3 day training workshop
 - Hands on
 - Key staff members
- Hired Consultant
 - Model updates
 - Complex scenarios
 - Continued training

Continued Use - Consultant

Table 2. Average plant influent flow and units in operation

	Flow (MGD)	Flow split %	Primary clarifiers (No)	Biore	actors	Final Clarifiers		Temp.
Scenarios				North	South	North	South (No)	(°C)
				(No)	(No)	(No)		
Validation Scenario	7.14	50-50	4	1	1	2	1	12.5
Scenario 1	9.14	50-50	4	1	1	2	1	12.5
Scenario 2	9.14	50-50	4	1	1	2	2	12.5
Scenario 3	9.14	50-50	4	2	1	2	2	12.5
Scenario 4a	11	50-50	4	2	1	2	2	14.5
Scenario 4b	11	60-40	4	2	1	2	2	14.5
Scenario 5a	12.5	50-50	4	2	1	2	2	14.5
Scenario 5b	12.5	60-40	4	2	1	2	2	14.5

Figure 10. Capacity evaluation scenarios showing North and South secondary effluent ammonia

Continued Use - Plant Staff

- Temporary loss of digester as part of biosolids improvement project
- Increased flow from upstream pump station
- WAS Thickening system down
 - Co-settle solids

Summary

- Catalyst to initiate the model
- Training
- Multiple resources
- Emphasize planning and experimentation

Questions?

Jared Buzo - Operations Engineer buzoj@oakgov.com

Our Next Speaker

With input and ideas from:

- Elizabeth Brown
- Mike Rieth
- Adam Sealock
- Christine Voigt

George Sprouse

Manager of Process Engineering, R&D, and Air Quality Monitoring

Case Study 2: MCES Minneapolis/St. Paul Metro Area

Outline

- Our organization
- Our use of models
- Examples
- Observations and conclusions

MCES

- Provides service to the metropolitan area of Minneapolis/Saint Paul
- 8 WWTPs, 970 km (600 miles) of interceptors, ~908 MLD (240 mgd) wastewater treated, 108 communities served

Plant	~Average Flow			
Metro	644 MLD	(170 mgd)		
Blue Lake	102 MLD	(27 mgd)		
Seneca	91 MLD	(24 mgd)		
Empire	38 MLD	(10.0 mgd)		
Eagle Point	16.7 MLD	(4.4 mgd)		
Saint Croix Valley	11.0 MLD	(2.9 mgd)		
Hastings	5.3 MLD	(1.4 mgd)		
East Bethel	151 m³/d	(40,000 gpd)		

MCES - Process Engineering/R&D

- Supports all 8 plants
 - 9 Engineers
 - 2 Scientists
 - 1 Data Specialist
- ~ 6 have been trained on use of WWTP modeling software
 - US\$2k/yr training budget
- 3 WWTP software licenses
 - Out right purchase
 - Some are legacy from former groups
- 2+ regular users of WWTP modeling software

MCES uses models to support capital planning and design

- Most treatment process projects have included WWTP modeling by the planning/design consultant
- Phosphorus removal addition projects included wastewater characterization and model calibration
- Model files were delivered to MCES as part of the project
 - We have both used those files and developed new config files in our work with operations

Process engineering/R&D uses models to support operations

- · Aid in troubleshooting
- Evaluate situations and ideas
 - For improvements and process changes
 - To explain observations
 - For planning maintenance activities
 - For full scale plants
 - For pilot scale experimental design
- For all of the above, assist in explaining ideas and suggested plans to operators and managers

Aid in troubleshooting - examples

- Improve P performance at Blue Lake WWTP
 - Determine if conversion of an anaerobic zone to RAS denitrification would improve P performance
- Modeling for N Removal Upset Causes and Response/Recovery at East Bethel
 - Recovery time estimates and intermittent wasting strategies
- Investigate the possibility an industrial discharge was contributing to poor dewatering performance at Empire WWTP
 - Specific model addressing full scale waste diversion experiment performance observations
- Improve P performance at Empire WWTP
 - Explain and demonstrate the impact of lowering RAS ratio on P performance in response

Aid in troubleshooting

- P performance at Empire WWTP
 - Explain and demonstrate the impact of lowering RAS ratio on P performance

Evaluate situations and ideas - full scale examples

- For all of the below, modeling assisted in explaining ideas and plans to operators and managers but not necessarily to predict exact results
- Metro WWTP: Investigate impact of sludge storage on P recycle and performance
- Empire WWTP: Evaluate digester feed addition location/heating control and digester temperature options (with control/general modeling software, not WWTP modeling software)
- Blue Lake WWTP: Evaluate proposed idea that nitrification was inhibited at plant (it was low DO not nitrification rate)
- Blue Lake WWTP: Explain the potential impact of nitrate addition in the collection for odor control on phosphorus removal
- East Bethel MBR Earlier Year Flows and Carbon Addition: Investigate the carbon addition and P performance, bio-P or enhanced bio-P
- Metro WWTP: Evaluate approaches to taking tanks off-line for maintenance

Evaluate situation and ideas - pilot scale examples

- Nitrification rate testing (WEF Methods for Wastewater Characterization in AS Modeling): Use modeling and associated parameter fitting to evaluate maximum nitrifier growth rates and decay rate experimental data
- Metro and Empire WWTPs: Use models to help design and the evaluate results of bench scale testing of simple methods of implementing N removal in existing tanks

Evaluate situation and ideas - pilot scale examples

 Use modeling software to incorporate model structure (e.g. AOBs and NOBs, approach to decay) into parameter estimation upfront and to accomplish parameter estimation over various experiments

Evaluate situation and ideas - pilot scale examples

 Metro and Empire WWTPs: Use models to help design and the evaluate results of bench scale testing. Simple methods of implementing N removal in existing tanks were evaluated.

Initial modeling using BioWin Model (typical)

Observations and conclusions

- Models help the Process and R&D engineers:
 - Explain, demonstrate, and communicate with operators and operations managers
 - Understand their systems
 - Test their ideas (full and pilot scale)
 - Improve plant performance and expand their troubleshooting range
- Our plant data often aren't "model ready"
 - A step of data reconciliation may be needed with plant data prior to input and calibration
 - Predictive modeling for specific interests/projects may require special data collection and analysis
- · Concerns and barriers to expanded use:
 - Staff time for training and use
 - · Need to understand concepts before using models
 - Expectations: prediction tool versus process understanding aid
 - WWTP software models don't address all of our questions
 - · Reaching a critical mass of expertise and confidence in models and modeling
 - IS hardware and program update constraints
- There are better tools than spreadsheets!

Our Next Speaker

Spencer Snowling, Ph.D V.P., Product Development

Case Study 3: WEF Operations Challenge Competition

Spencer Snowling, Ph.D Hydromantis ESS, Inc.

Agenda

- Use of Modeling for Operator Training
- WEF Operations Challenge Competition
- Analysis of WEFTEC competition results
- Conclusions

Simulation for Operator Training

- Significant loss of process knowledge anticipated over the coming decade
- Wastewater field predicted to suffer more than other industries, due to

longer-than-average tenure (AWWA Research Foundation, 2005)

Simulation for Operator Training

- Modeling is an established tool in process engineering world
- Growing interest in simulation as a wastewater training tool over the past decade
- Interactive nature of simulators allows for "hands on" learning styles

Simulation for Operator Training

Simulation for Operator Training

The "Link Trainer" – circa 1940

Simulation for Operator Training

Modern Training Simulator

Simulation for Operator Training

High-fidelity patient simulators

Simulation for Operator Training

Nuclear Operations Control Room Simulator

Benefits

- instantaneous results no need to wait 3 weeks to see if the SRT change had any effect
- no consequences if you fail your virtual clarifiers, there is no virtual fine
- low-cost testing you can implement new tanks, settlers, control systems, etc., for free and see what happens

Benefits

- control of inputs you can whip up a wetweather event anytime you like, rather than waiting for one to happen
- repeatability users can repeat simulations, lesson, etc., as much as needed
- comfort level users can move at their own pace
- **portability** desktop virtual plants can be run on any computer anywhere

WEF Operations Challenge

- Simulation part of WEF Operations Challenge since 2016
- Realistic, challenging scenarios
- Operator friendly, and easy to use
- · Tracks progress, enables scoring

WEF Operations Challenge: Simulation as a Process Skill

WEF Operations Challenge

- Each challenge question is a simulation of plant that is in not in compliance
- Operators trouble-shoot the problem and make changes to operation of the plant
- Point awarded for meeting effluent criteria and other targets

WEF Operations Challenge

- 15 challenges in 15 minutes
- Points for meeting effluent criteria:
 - · TSS, TKN, BOD₅, etc.
- Points for achieving target operational conditions:
 - · Minimum MLSS, target DO range
- Points for achieving operating cost targets:
 - · energy costs
 - · chemical costs
- Each team worked with a practice simulator prior to the competition

WEF Operations Challenge 2017

Process Control Event

Process Control Simulator

- Successful implementation in 2016
- Operators have adopted simulation technology very quickly
- Had to increase complexity of questions significantly to keep ahead of teams over the past 2 years

Analyzing the Results

- We analyzed the data to see what the highest-scoring teams did differently than the others
- What can we learn about how the expert trouble-shooters perform under pressure?

Analyzing the Results

No significant correlation between number of attempts and score

Analyzing the Results

Eight teams (out of 42) scored a perfect 75 points

Analyzing the Results

- Eight teams (out of 42) scored a perfect 75 points
- Three of those teams answered the question in 10 attempts or less
- Those teams all took the same problem-solving approach to the question

Analyzing the Results

- The most optimal problem-solving approach was to take the following actions, in order:
 - Increase airflow to aeration basin by turning on a DO controller
 - 2) Bring one or more of the off-line secondary clarifiers on-line
 - 3) Turn off the methanol dosage to the bioreactor
 - 4) Increase ferric dosage (at one or both dosage points)
 - 5) Increase wastage to manage MLSS and effluent solids

Analyzing the Results

- These trouble-shooting actions had the effect of addressing the problems via a systematic, optimized methodology:
 - first bring aeration and effluent solids into line

- then make chemical dosage adjustments (for cost and effluent quality)
- then make wastage adjustment to handle the excess solids generated from the chemical precipitation of phosphorus.

Conclusions

- Operators can make use of the interactive, nonlinear, "systems-thinking" environment that simulators provide to become efficient at solving activated sludge problems
- Operations Challenge teams have devised their own methods to trouble-shoot complex multitarget activated sludge problems
- The most successful teams had a common approach

Conclusions

- The best OpsChallenge teams have become very good at process problem-solving via simulation
- We have increased the complexity of the treatment plant and the process challenge questions

Conclusions

· Lots of enthusiastic participation in competitions and training sessions

Some regions now certifying simulation-based

training courses

Ops Modeling – Aug. 23, 2018

An MRRDC Webcast **Modeling for Operations**

• Final Q & A:

Primodal Moderator → John Copp Spencer Snowling Hydromantis Intro

Clean Water Serv. Models \rightarrow Adrienne Menniti

Application → Lina Belia Primodal

Jared Buzo Application → **Oakland County** Application →

George Sprouse Metro. Council

Resources

- IWA STR 22
 Guidelines for Using Activated Sludge Models
- WEF MOP 31
 Wastewater Treatment Process Modeling
- WEF On Demand Wastewater Library (OWWL)
 https://www.wef.org/resources/publications/owwls/
 Under Municipal Resource Recovery Design
- WEF 2017 session 507
- Models for Operations group Email Adrienne Menniti or Spencer Snowling

