

Today's Speakers

- Tom Grafft and Steve Jantz
 - Alternate Wastewater Processes for Small Systems - Kingsley, IA Case Study
- Rhine Perrin
 - Ammonia and BOD Reduction
 Using Recirculating PolyGeyser® Technology
- Martin Gross and Kuldip Kumar
 - Recovering Ammonia, Total Nitrogen, Total Phosphorus and Reducing BOD using Algae

Our Next Speakers

Tom Grafft
Associate Principal +
Certified Operator, ISG

Steve Jantz
Operator-In-Charge,
City of Kingsley, IA

Alternate Wastewater Processes for Small Systems

Kingsley, IA Case Study

Kingsley, Iowa Challenge

- Original treatment system consisted of a conventional 2-cell aerated lagoon constructed in 1967
- NPDES Permit Limits Changed
 - Driven by changes in water quality regulations
 - New permit included a schedule to achieve compliance with NH3 + E.coli limits
 Tighter limits required different approaches for cold-weather treatment
- The existing lagoon system could not consistently meet new ammonia nitrogen and E.coli limits
- City of Kingsley began evaluating options for alternative treatment technologies

Kingsley, Iowa Solution

- To effectively treat ammonia nitrogen, you need:
 - Nitrifying bacteria
 - · Good environment for bacteria to thrive
- Technologies evaluated to treat ammonia nitrogen:
 - SAGRTM Submerged Attached Growth Reactor by Nexom
 - LemTec[™] Covered Aerated Lagoon + Polishing Reactor by Lemna Environmental Technologies (LET)
- Technology selected by Kingsley:
 - SAGRTM (Submerged Attached Growth Reactor) by Nexom
 - Cost to retrofit with SAGR™ was less than LemTec™

SAGRTM | Submerged Attached Growth Reactor

- Produced in Canada by Nexom
- Efficient for existing lagoon retrofits
- Treatment is driven by heat retention in SAGR™ cells
- · Disinfection is provided by UV

SAGR[™] | Design Parameters

Design Population: 1,500

Design Flow:

0.300 MGD (AWW)

Detention Time: 25.8 Days

Total Footprint: **5.7 Acres**

Construction Cost: \$1,765,100

Flow Type	Flow (MGD)
Ave. Dry Weather (ADW)	0.131
Ave. Wet Weather (AWW)	0.300
Max. Wet Weather (MWW)	0.439
Peak Hourly Wet Weather (PHWW)	0.820

Parameter	30-Day Ave. (lbs/day)	Daily Max. (lbs/day)
BOD	262	393
TSS	300	486
TKN	45	73

	Storage Capacity (gallons)	Detention Time (days)
Cell #1	2,618,263	11.8
Cell #2	2,670,794	12.0
SAGR™	500,000	2.0
Total	5,789,057	25.8

Water Environment Federation the water quality people

SAGR[™] | Design Parameters

- 2 Lagoon Cells
 - Cell 1: Aeration + Complete Mix
 - Cell 2a: Aeration + Partial Mix
 - Cell 2b: Quiescent, Settling Cell
- Enclosed Blowers

SAGRTM | Start-Up + O&M

- Add ammonia supplement to 'seed' the SAGR system
 - · Nexum on-site assistance
 - · Locally available ammonium nitrate
 - · Process takes several weeks to establish biomass
- Operation & Maintenance
 - Scale build-up in SAGR air lines sometimes occurs with hard water
 - SAGR air lines blow off condensation monthly
 - · Blowers change oil annually
 - · Lagoon aeration diffusers require occasional maintenance
 - UV system clean and remove for winter
 - Replenish wood mulch every 3-5 years

Our Next Speaker

Rhine Perrin, El Design Specialist

Ammonia and BOD Reduction Using Recirculating PolyGeyser® Technology

Overview

- What is a Beadfilter?
- What is a PolyGeyser®
- How does a Recirculating PolyGeyser[®] Work
 ?
- Present Field Study Results of Facultative Lagoon Polishing

Bead Filter Basics

- Uses Floating Media to form a Packed Bed to Capture Solids
- Acts as a Fixed Film Reactor to Biologically Filter Wastewaters
- Minimizes Water loss due to Backwashes
- Operates at Low Pressures and Head Losses Increasing Energy Efficiency

Types of Bead Media

Standard Media 35% Porosity 1/8th inch diameter Solids only Application

- Food Grade LDPE
 Plastic
- 1100 m²/m³ of Surface
 area
- Never NeedsReplacement
- Granular Attached
 Growth Media

Enhanced Nitrification (EN) Media 55% Porosity Crushed Design for Solids and Biological Filtration

What Makes a PolyGeyser?

- Screen
 - Contains the floating media
- Charge Chamber
 - Holds the pneumatic charge in-between back washings
- Trigger
 - Non mechanical, Non electrical backwashing mechanism
- Sludge Storage
 - Internally settles sludge

The Backwash

- Trigger Fires Injecting the Air into the Bead Bed
- Bead Bed Expands, releasing solids
- Air Scrubs the Beads Harvesting Excess Bacteria
- Backwash Waters Refill Charge Chamber

 Unlike Sand Filters, Bead Filters are Immune to Bio Fouling and Channeling

What is a Recirculating PolyGeyser?

- Same Auto-Pneumatic Backwashing Technique as Traditional PolyGeysers
- Employs Direct Pneumatic Discharge (DPD) Sludge Handling
- Internally Recirculates
 Wastewater Multiple Times
 Before Discharging
- Uses Airlifts to Recirculate and Re-oxygenate Filtered Wastewater

Anatomy of a Recirculating PolyGeyser

- 1. Recirculation Basin
- 2. Inlet Diffusers
- 3. Bead Bed
- 4. Bead Retention Screen
- 5. Recirculation Airlift
- 6. Internal Charge Chamber
- 7. Auto-Pneumatic Trigger
- 8. Sludge Discharge

Why Recirculate with Airlifts?

- Airlifts not only Physically Recirculates the Wastewaters Through the Filter but Also Re-oxygenates at the Same Time
- Provide High Flux Rates
 Through the Bead Bed
 Increasing Oxygen Transfer
 into the Biofilm

Water Environment Federation

Case Study: Pelahatchie, MS

- Study Ran from 6/28/17-8/16/17
- Consistently Discharged:
 - BOD: <3
 - Ammonia: <1
 - TSS <30
- Unit ran untouched for 1.5 months
- BOD and Ammonia Conversion rates upwards: 2.5 kg/m³-day and 2 kg/m³-day Respectively

Pelahatchie, MS

- Facultative Lagoon followed by a Rock Reed Filter
- Trying to Meet a 3/30/2 Discharge Criteria
- Completed a 6 month Study using the RCPG 10 Demo unit.

Questions?
Contact: Rhine.Perrin@ASTFilters.com

Special Thanks To:

Environmental Technical Sales (ETEC)

The City of Pelahatchie, MS

Our Next Speakers

Dr. Martin Gross President

Dr. Kuldip Kumar Sr Environmental Soil Scientist

Advantages of RAB vs Conventional Algae Systems

Conventional Algal Culture

- Low productivity and treatment
- ➤ Limited light and CO₂ supply
- ➤ Land intensive
- ➤ High harvest & processing costs

- Simple and inexpensive harvest
- ➤ Enhanced delivery of light & CO₂
- ➤ 10× higher productivity & treatment
- > Efficient space utilization
- ➤ Natural separation of HRT & SRT

Algae serves as a simple retrofit to existing treatment systems and can treat a variety of wastewater streams

- > Tertiary treatment for TN, TP polishing
- > Primary treatment for NH₃, TN, TP, BOD
- Concentrated side streams such as anaerobic digestion effluent
- > Industrial pretreatment

How the RAB System can Help Small Communities Using Lagoons Meet New Ammonia Permits

Case Study Example

Columbus Junction, IA

- > **Population Served:** 2,600 people
- > Problem: Cannot reach new ammonia discharge permit
- > Requires Treatment Plant Upgrade

Limited solutions

- > Solution 1: Convert mechanized system (\$5.5M)
- Solution 2: Retrofit SAGR Process or Lemna Lagoon Cover (\$4.5M)
 - Does nothing for phosphorus removal
 - Does nothing for total nitrogen removal (only converts ammonia to nitrate)
- Solution 3: GWT's RAB algal treatment system to recover ammonia, TN, TP, and BOD (\$3.0M)

Iowa DNR approved RAB treatment system May 2018

RAB System Sized for Columbus Junction, IA

Impact of the RAB treatment facility:

- > Algal biomass (dry): 33 tons/year
- > CO₂ fixation: 60 tons/year
- > Nitrogen removal from wastewater: 12.7 ton/year
- > Phosphorus removed from wastewater: 2.5 ton/year

How the RAB System can Help Small Communities Meet TN, TP, and Ammonia permits

Case Study Example

Albia, IA

- > **Population Served:** 3,700 people
- > Flow Rate (AWW): 1.7 MGD
- Problem: Cities in Iowa that have a flow over 1 MGD are receiving TN, and TP permits. City also cannot meet new ammonia permit
- > Requires Treatment Plant Upgrade

RAB Sizing to Meet Permits

- > Meeting TN permit (yearly average, 10 mg/L): 5 RAB Modules (\$2.6 M)
- > Meeting TP permit (yearly average, 1 mg/L): 7 RAB Modules (\$3.7 M)
- > Meeting NH₃ permit (daily limits): 9 RAB Modules (\$4.7 M)

RAB sized to meet ammonia permits also meets TN and TP permits

RAB System Sized for Albia, IA

Impact of the RAB treatment facility:

- Algal biomass (dry): 59 tons/year
- > CO₂ fixation: 106 tons/year
- > Nitrogen removal from wastewater: 24 ton/year
- > Phosphorus removed from wastewater: 4.7 ton/year

^{* \$} values above are installed costs for RAB equipment, RAB reservoir, greenhouse

Our Business Model:

1. Provide and Install RAB System

- GWT provides RAB system and a design package for the "non-RAB" part of the system including headworks, greenhouse, reservoir etc.
- II. GWT can provide a fixed price operating and maintenance contract upon request

2. Provide Offtake Contract for Algae

- GWT collects, processes, markets, and sells algae
- II. City receives revenue from algae sales revenue splitting is offer in 2 ways

Option 1: 50:50 profit share
Option 2: Fixed price \$250/dry ton algae

Pilot & Demonstration Results

MWRD Chicago Pilot Study 2015-2017

Primary Objective: Phosphorus Removal from Concentrated Side Streams

MWRD Chicago Demonstration Study, 2017-Present

Primary Objective: Phosphorus Polishing from Plant Effluent

Feedback from MWRD Chicago Demonstration Project

MWRD Chicago Project Leads

Kuldip Kumar Ph D

Senior Environmental Scientist MWRD Chicago

R

Tom Kunetz

Associate Director of Engineering MWRD Chicago President Water Environment Federation

Our Test Site in Dallas Center, IA

Small Community Needing Additional Ammonia Treatment

Dallas Center, IA Pilot Study

Primary Objective Ammonia Removal (2.5 year pilot)

Ames, IA Pilot Study

Primary Objective TN, TP recovery from effluent and AD centrate

Cresco, IA Demonstration Study

Primary Objective TN, TP, BOD recovery from raw WW

Algae is The Most Sustainable Treatment Option

Lower Carbon Footprint

> Algae consumes CO₂ from the atmosphere while it treats water

Capturing and REUSING Nitrogen and Phosphorus

> Traditional bacterial technologies do no capture and reuse N and P

Renewable Algae Biomass

The algae grown on our system is used to make renewable bioplastics and biofertilizers

Lower Energy Use

> Our system uses motors to rotate belts, others pump air which is much more energy intensive.

