Water Environment

Operation of Biological and Chemical Phosphorus Removal Systems

Paul Dombrowski, Woodard & Curran, Inc. Spencer Snowling, Hydromantis, Inc.

Paul Dombrowski, PE, BCEE, F.WEF, Grade 6 Operator (MA)

Chief Technologist Woodard & Curran, Inc.

3

Spencer Snowling, Ph.D, P.Eng

V.P., Product Development

Hydromantis Environmental Software Solutions, Inc.

Water Environment

Webinar Agenda

- Introductions
- Fundamental Mechanisms of Phosphorus Removal
- Simulator Description and Overview
- Biological Phosphorus Removal
- EBPR Simulator Examples
- Chemical Phosphorus Removal
- Chemical-P Simulator Examples
- Hydromantis Case Studies
- Questions

Simulator Overview

- Model = Series of equations that defines a process or plant
 - Model based on mass balances and biological conversions of organics (COD), nitrogen, phosphorus and solids
- Simulator = Program that uses a process model to experiment with a plant configuration
- OpTool SimuWorks Overlay = Plant-specific layout that provides graphical interface for plant operational testing and training

Limitations of Conventional EBPR

- Reliant on influent conditions
- Changes in influent conditions or operation can result in inconsistent performance
- Minimal process control options
- Potential competition of GAOs with PAOs

Water Environment

Water Environment

Why Use S2EBPR?

- More reliable than conventional EBPR
- Less sensitive to influent carbon quantity and quality
- Less impacted by DO and NO₃-N recycles
- Selects against GAO's
- Uses similar or less tank volume as standard EBPR
- Can be readily incorporated into existing tanks
- Allows more influent C for denitrification

<section-header><list-item><list-item><list-item>

entional wise	dom on P removal technolog
Effluent TP Target	Conventional Approach
<1.0 mg/L	EBPR or chemical addition + good clarification + chem addition (backup for EBPR)
<0.5 mg/L	EBPR or chemical addition + filtration + chem addition (backup for EBPR)
<0.1 mg/L	EBPR + chem addition to clarifiers + filtration (or tertiary process)
< 0.05 mg/L	EBPR + chem addition + high-level filtration
< 0.01 mg/L	EBPR + chem addition + membrane filtration

Chemical Phosphorus Removal Case Study

- Nobleton WRF Nobleton, Ontario, Canada
- Extended Aeration System
 - BOD, Nitrogen and Phosphorus Removal
- 0.75 MGD (2.9 MLD) Capacity
 - Extended Aeration
 - Chemical Phosphorus Removal
 - pH Control
 - Filtration/UV Disinfection

Chemical Phosphorus Removal Case Study

- Small facility receiving relatively small load
- Only one half of the plant in service
- Influent from pump station

Case Study – Alum Dosage Efficiency of alum dosage is dependent on pH Bring up pH with NaOH dosage Chemical dosing can have significant effect on MLSS Secondary alum dosage to polish effluent

Case Study Summary

- Nobleton, Ontario achieves their phosphorus limit through alum dosage
- It can sometimes be a challenge to manage both effluent TP and effluent pH in systems with chemical dosage

