Evolution and Applicability of Pressure Pipe Rehabilitation

November 1, 2017 1:00 - 3:00 pm Eastern

<section-header>

Today's Moderator

NASSEE

Jennifer Steffens, P.E., Senior Project Manager, Pure Technologies, Inc.

r quality people"

John P. Schroeder, P.E., BCEE

- National Pipeline Assessment and Rehabilitation Specialist
- 25 Years Experience with CDM
 Smith
- Columbus, Ohio

NASSED

• B.S University of Cincinnati, Civil/Environmental Engineering

Agenda

NASSED

- 1. Why are pipeline inspections Important?
- 2. RISK = Consequence of Failure x Probability of Failure

Water Environ Federation

- 3. Failure Trends
- 4. Components of Condition Assessment Programs

A Wake-Up Call To All Utilities

Consequence Pipe Failure/ Triple Bottom Line

- Traffic Delays
- Health and Safety
- Customer Loss of Service

- **Emergency Personnel**
- Constr. Replacement Costs
- **Bypass Pumping**
- **Commercial Losses**
- **EPA** Fines

- SSOs, CSOs

Components of Pipeline Condition Assessment Programs

- Review of Existing Information
- Determine Prominent Failure Points
- Desktop Criticality Analysis
- GIS Tools and Asset Management Integration

Water Environ Federation

- Location/Verification of High Points (for wastewater forcemains)
- Field Work (Excavations, Soils, Water)
 - Pipe Assessment Tools
 - Internal Assessment
 - External Assessment

ASSET

- As-Builts Drawings
- Maintenance Records
 - Interviews with Maintenance Staff
- Complaint Logs
- History of Breaks, Leaks & Repairs
- Work Order Forms
- Soils Maps
- Topographic Features
- Existing Nearby Metallic Pipelines and CP Systems

Likelihood of Failure

- Physical data
 - Age
 - Size
 - Material
- Condition data
 - Pipe condition
 - Joint condition
- Environmental Attributes
 - Soil condition

NASSED

Groundwater table location

- Operational/performance data
 - Pressure
 - Maintenance records
 - Breaks and leaks history

Typical Weighting factors				
Attribute Category	Weighting Factor			
Physical	0.15			
Condition	0.35			
Environmental	0.25			
Operations & Performance	0.25			

Water Environment Federation the water quality people"

Consequence of Failure

- Number of customers served by the pipe
- Proximity to hospitals
- Proximity to large users
- Serving business districts
- Road Type Interstate, State, Local
- Environmental impact
- Potential for adverse publicity
- Redundancy
 - Existing parallel pipe or existing loop

Pressure Pipe Assessment Matrix

Technology	Ci-	- n	Dino Motorial		In /Out Son		ut Com	ico Tupo of			
rechnology	SIZ	5 P	the	IVIA	ter	a		1170	ut serv	ice Type of	
Testing / Data											
TECHNOLOGY		APPLICABLE	PIPE MATERIAL			PIPE STATUS DURING TEST			TEST CONDITIONS		
Name	Firms	SIZE RANGE	Ferrous CI/DI/Stl	Cemer	AC/RCP	Plastic PVC/HDPE/FRP	In-Service No Excavation	In-Service Excavation	Out of Service Excavate, Open	Parameter Tested	
Acoustic/Leak Detection Tools							No Exc. If 2"				Hot inserted and retrieved thro
Acoustic Leak Detection (tethered)	Pure Sahara	10" and Up					Tap available			Leak detection, air pockets	air pockets
Acoustics Leak Detection (surface mount)	Echologics RTLeakListener	All Sizes						pothole for accelerometers		Leak detection only	Install accelerometers on exp not validated yet on force mail
Free Swimming Acoustic Leak Detection	PURE SmartBall	8" and up								Leak detection, air pockets	Hot inserted and retrieved the bonnets and retrieved at man for air pockets
Assurptionally Security on Ether Option	PURE Soundprint AFO	All Sizes					Out of service during installation			Now - software only for PCCP wire breaks Future - Leak detection, air pockets	Permanent installation
Acoustically Sensitive Fiber Optic	Echologics LeakMonitor	All Sizes					around valves, Sttings			Leak detection	Expected to be effective
Wall Thickness/Condition Tools	E de alta alta a	AT 0	_		(4.0)			Need to		Description and shiptoness in Dir Grand CT	
Acoustic Wall Thickness	Echologics	All Sizes	_		(AC)			pothole for		Namaning war bickness in bit, Crand ST	Beach in 2010. Both require
	Pure Sahara with PWA	10" and up						pothole for		Average Remaining wall thickness	accelerometers. Initial result
Broadband Electromagnetic (Internal Pig)	Rock Solid Group allied with several testing	All Sizes								Remaining wall thickness in Cl and Dl and ST	Pipe must be drained, expose
Broadband Electromagnetic (External HSK)	firms in US										Pipe exterior must be expose
Magnetic Flux Leakage (External scanner)	AESL	All Sizes								Wall Thickness testing/profiling	Pipe exterior must be expose
Remote Field Eddy Current/MFL	PICA	4" to 24" (to 36" in future)					Finserted thru pig launcher	If inserted thru pipe opening	If pulled thru on a tether	Internal test for metal wall loss, conssion in DI, CI and ST	Pipe must be drained, expose
Ultrasonic (External)	NDT Corp, MacTec, others	All Sizes			(AC?)					External test for wall thickness	Local only along pipe wall. No calibrated to material.
Ultrasonic (Internal)	NDT Corp, Rosen, other	A GLUS								Internal test for wall thickness	Developed in Germany for Ste pilot in NYCDEP not success
Magnetic Tomography	Transkor-K	All Sizes								External test of wall thickness and active corrosion	Used from the surface
Prestressing Wire Condition Assessment	tTools		-								Can hot insert from 24 to 36".
Remote Field Eddy Current / Transformer Co	Pure recrinologies	varies by too					Pipe Diver	Pipe Crawler	Crawler, Walker	mema test of whe breaks in PCOP	and opened
Other/Ancillary CA Program Components											
Closed Interval Potential Survey	PPT	All Sizes								External test of pipe coating failure (soil corrosion)	Requires pipe to be electrical
Soil & GW Corrosion Testing	Many Firms/Local Labs	All Sizes								Take soil & groundwater samples for lab analysis	Indicator only of soil corrosion
Pipe Coupons or Sampling	Many Firms/Local Labs	All Sizes								Take coupons or pipe samples for analysis	Take samples from pipe to co strength, flexutal strength, mi universal indicator for AC

John C. Matthews, Ph.D.

- Director of the Trenchless Technology Center (TTC) at Louisiana Tech University
- 14 Years Experience in Pipeline Condition Assessment & Rehabilitation
- B.S in Construction Engr. Technology, 2004 (LA Tech)
- M.S. in Civil Engr., 2006 (LA Tech)
- Ph.D. in Civil Engr., 2010 (LA Tech)

ASSEE

Overview

- Background on Water Main Rehab
- Available Rehabilitation Methods
 - Applicability
 - Advantages
 - Limitations

ASSEL

• Factors for Selecting Methods

Water Environ Federation

Background

- Many pipelines are reaching the end of their useful lives
- Failure can cause catastrophic damage and emergency repairs are extremely expensive
- Utilities have limited budgets for asset replacements so one must use asset management principals
- A key part of pipeline asset management is rehabilitation to extend the useful life of an asset (see AWWA M36)

Background

To help utilities gain access to information on pipeline rehabilitation, the EPA published several reports under its Aging Water Infrastructure (AWI) Program

Key reports include:

- A State-of-Technology (SOT) report on Water Main Rehab
- Multiple demonstration projects of innovative rehab technologies
- Multiple reports on innovative condition assessment technology, a key step in the asset management process

Sliplining Advantages

- Only trenchless tool capable of upsizing pipe diameter
- Can typically withstand all loads (Class IV)

Sliplining Limitations

- Services require pits for external reinstatements and many bend conditions
- Surface heave possible under some soil circumstances
- Site must be large enough to layout repair pipe for fusing

• Sliplining with either close-fit liners or grouted in place pipes or liners

Applicable Rehabilitation Methods

Sliplining Advantages

- Can line long straight segments at one time (>1,000 ft)
- Can typically withstand all loads (Class IV)

Sliplining Limitations

- Services require pits for external reinstatements
- Largest reduction in diameter typically
- Cannot line through most bend conditions (pits required)
- Cleaning requirements for tight fit liners

CIPP Advantages

- Can typically withstand all loads (Class IV)
- Robotic reinstatement of service connections
- Can line through various bend conditions up to 45°
- Hydraulic capacity can potentially increase

CIPP Limitations

- Limited to ~800 ft lining shots
- Excavation required for large bends & damaged services
- Cleaning requirements for tight fit liners

CFRP Advantages

- Can typically withstand all loads (Class IV)
- Reinstatement of service connections not required
- Can line through any bend conditions
- Hydraulic capacity can potentially increase

CFRP Limitations

- Only applicable to person-entry sized pipes
- Spot repair mostly, though continual lining is possible
- Cleaning requirements for bonded liners

• Joint and spot repair systems and seals for leaks

Applicable Rehabilitation Methods

Joint Seal Advantages

- Sleeves mechanically lock into place and cannot unlock
- Seals leaking joints and pinholes
- Reinstatement of service connections not required

Joint Seal Limitations

- Only applicable to person-entry sized pipes
- Non-structural solution limited to point locations
- Cannot seal around bends

Spray-on Lining Advantages

- Reinstatement of services not typically required
- Spans small corrosion holes and joint gaps
- Cures quickly and maintains or improves flow capacity

Spray-on Lining Limitations

- Cleaning requirements for bonded liners
- Ridging and shadowing common in robotic installations
- Structural claims are unproven for many products

Factors for Selecting Methods

- Structural Requirements
- Service and Branch Connection Reinstatements
- Flow Capacity Needs
- Pipe Accessibility

AST

- Contractor Availability/Timing
- Diameter, Length, Bend Requirements

FOR MORE INFORMATION

WEF & NASSCO Pressure Pipe Committee (Update)

EPA Drinking Water & Wastewater Systems Research

 <u>www.epa.gov/water-research/drinking-water-and-</u> wastewater-systems-research

Trenchless Technology Center (TTC)

<u>www.ttc.latech.edu</u>

North American Society for Trenchless Technology (NASTT)

• www.nastt.org

Questions?

Contact:

Dr. John C. Matthews

Director of Trenchless Technology Center (TTC)

Louisiana Tech University

Ian A. Lancaster

Senior Director of
 Pressure Pipe_____

AST

NASSEE

- Aegion is a worldwide engineering, manufacturing and construction corporation
- 20+ years of underground utility experience

Water Envir

Agenda

- Benefits of structural pressurized pipeline rehabilitation
 Ideal project characteristics
- Cost considerations
- Design parameters
- Proven products/processes
 - Cured-in-place pipe (CIPP)
 - Fiber reinforced polymer (FRP)
 - Modified HDPE slip lining
- Project Steps

ASSEE

• Example Projects

Benefits of Pressure Pipe Rehabilitation

- Rapid installation
- Minimal excavation
- Maintenance of traffic
- Improved flow characteristics
- Structural stability
 - 50-100 year design
- Corrosion resistance
- Cost savings

ASSED

NASSEE

Ideal Projects

- Critical locations
 - High-profile areas, railways, etc.
- Major roadways
- Distribution & transmission
 pipelines
- Busy right-of-way
- Social costs > Direct costs

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item></table-row><image>

CIPP - Service Reinstatement

• Adhesive or Mechanical

- Step 1 cleaning of protruding service
- Step 2 plugging of existing service connection
- Step 3 locating and drilling of the existing service (after lining)
- Step 4 installation of mechanical connection

NASSED

Fiber Reinforced Polymer (FRP)

Modified HDPE Slip Lining

- PE 4710 HDPE material
- Tight-fit or Close-fit
- Custom engineered & manufactured
- Tight fitting = flow maximization
- Installed by compression or deformation
- Diameters from 4" 66"
- Pressures up to 250 psi

ASSEL

NASSEL

Modified HDPE Slip Lining

Radial compression

- Diameter is temporarily reduced by radial compression
- Timing is important as the liner will begin to grow back once tension is released
- Can be used for structural or nonstructural
- Entire liner section is installed in a single and continuous "pull"

Elastic deformation

- Achieves significant cross sectional reduction to facilitate installation
- Wall thickness limitations-maximum of 1"
- Not suitable for structural loading
- "Fuse and fold" method facilitates small worksite footprint
 Only moderate collapse resistance
- Re-rounded after installation

Water Environm Federation

Typical Project Steps

- Bypass (if necessary)
- Access pits
- Pipeline cleaning
- Inspection
- Structural lining installation
- Pressure testing
- Service reinstatement (if necessary)
- Chlorination (if necessary)
- Restore service

AST

Nater Enviro

In Summary...

- Less disruption, compared to excavation
- Fully structural materials
- 50-100 year design life
- Proven products/processes (20+ years)
 - Cured-in-place pipe (CIPP)
 - Fiber reinforced polymer (FRP)
 - Modified HDPE slip lining
- Diameters from 4" 96"

ASSEL

• Pressure ratings exceeding 450 psi

Water Environ Federation

Pros and Cons of flexible Liner

Benefits of Flexible Kevlar P.E. Coated liner	Considerations for installation
No onsite wet out or cure on site. Liner is inflated with air after install.	Pressure test must be done to insure proper installation. Installers must be certified
Very small foot print and minimal disruption to the environment, only requires a winch to pull in material.	Not a tight fit, annular space= reduction of inside diameter
Pipe does not have to be dry or perfectly clean.	CCTV inspection must be completed prior to installation to confirm suitability. Problem for long runs and multiple bends.
Extremely long runs(8,500LF) with multiple bends including 45 degree bends. High pressures are acceptable	Host pipe is only a conduit for the liner all internal pressure and forces are not conveyed to host. Host must be able to bare soil loads.
	Water Environme

Pro	oject Details					
Year of rehabilitation - January /2017						
Technical Details:						
Host Pipe Material:	Ductile iron					
Transported Medium:	Industrial water					
Host Pipe Diameter:	12 inch					
Operating Pressure:	160 psi					
Raedlinger Primus Line [®] System:	12 inch Primus Liner with a nominal design pressure of 363 psi					
	4 x 12 inch low pressure connectors with double-sided 12 inch flanges					
Total Length:	2 x 980 ft					
Number of Construction Sections:	2 installation sections with 980 ft					
Installation Time:	3 days for the installation of the Primus Liner and connectors					
1						
	Verter Environment Federation Texted quilty code					

Conclusion

ASSEL

- Project was finished on schedule
- There where no issues during the installation
- Cleaning did take longer then anticipated
- One day for cleaning and prep
- One day for installation
- One day for fittings installed/pressure test
- State/ town officials all satisfied with results
- Pipe owner is planning more rehabilitation with this system
- Installer said it could have been completed in two days. He was being cautious as it was his first installation of this system.

Evolution and Applicability of Pressure Pipe Rehabilitation

November 1, 2017 1:00 - 3:00 pm Eastern

Thanks to our webcast sponsor!

ASSEL

Water Environn Federation