

Anaerobic Digestion 101 November 2, 2017 1:00 - 3:00 pm Eastern WEF Plant Operations and Maintenance Committee

Today's Moderator

Fred Edgecomb Gilbert Neely Wastewater Reclamation Facility Project Manager

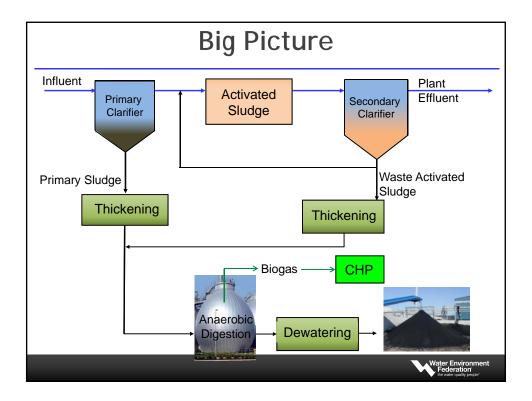
Today's Speakers

Matthew Higgins, Ph.D. Professor, Civil and Environmental Engineering Bucknell University

Matt Van Horne, P.E. Hazen and Sawyer

Peter Loomis, P.E. CDM Smith

Dave Parry, Ph.D

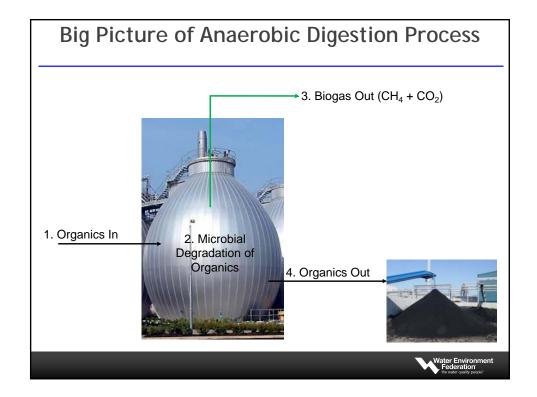

Anaerobic Digestion 101

Matthew Higgins, Ph.D. Claire W. Carlson Chair in Environmental Engineering Bucknell University Lewisburg, PA 17837

Why Anaerobic Digestion?

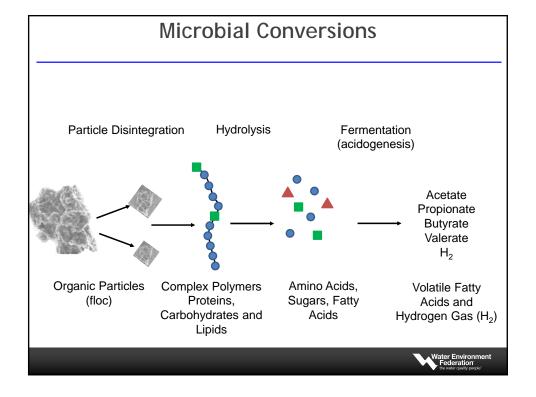
One of the approaches to meeting EPA 503 Requirements for biosolids:

- 1. Vector Attraction Reduction (VAR) requirements
 - -reduces the organics in the sludges so it is 'stable'
- 2. Reduces pathogens
 - -Meets EPA Requirement as
 - "Process to Significantly Reduce Pathogens"



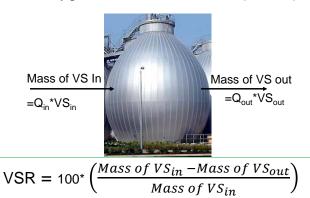
Why Anaerobic Digestion?

- 3. Produces a renewable energy source biogas (55-70% methane) uses:
 - -Combined heat and power systems (CHP)
 - -Digester heating
 - -Vehicle fuel
 - -Put into natural gas grid
- 4. Produces a excellent soil amendment product, rich in:
 - -carbon
 - -nitrogen
 - -phosphorus
 - -micronutrients



()r/	าวท	ICC	In
\mathbf{O}	Jan	ics	
;			

Feed Stocks	Typical Feed Total Solids Concentrations
Waste Activated Sludge (WAS)	4-6%
Primary Sludge (PS)	4-6%
Primary/Secondary Blends	4-6%
Food Wastes	5-15%
Fats, Oils and Grease (FOG)	Highly variable
Lots of other organic wastes	variable



Acetate Propionate Butyrate Valerate H₂ Acetate Propionate Butyrate Valerate H₂ Aceticlastic Methanogenesis CO₂ + CH₄ Hydrogenotrophic Methanogenesis

Microbial Degradation

Typical Parameters for Expressing Degradation

- 1. Volatile Solids Reduction (VSR)
- 2. Chemical Oxygen Demand Reduction (CODR)

Microbial Degradation

VSR by Van Kleek Equation

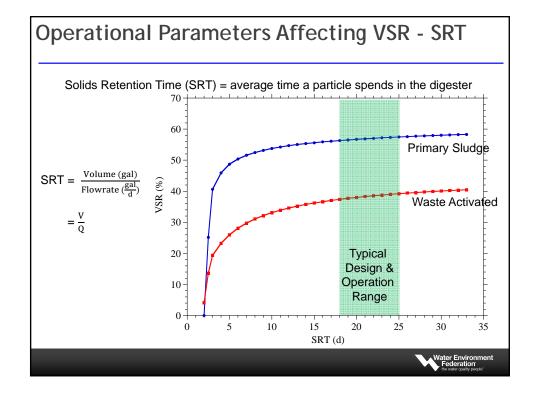
- Van Kleek assumes inert solids are constant in and out of the digester, no settling of grit
- Inert Solids = TS VS (also called 'fixed' solids or ash')
- Equation uses the volatile solids fraction (VSF) = $\frac{VS}{TS}$

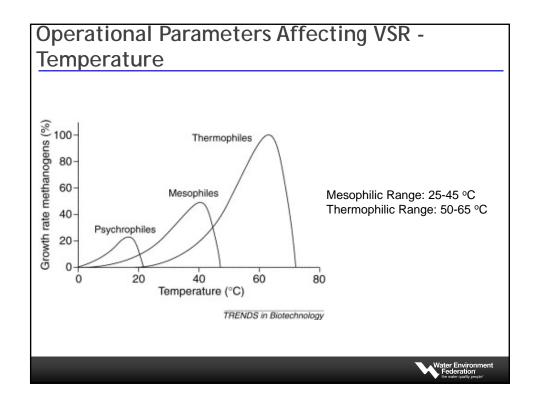
Microbial Degradation

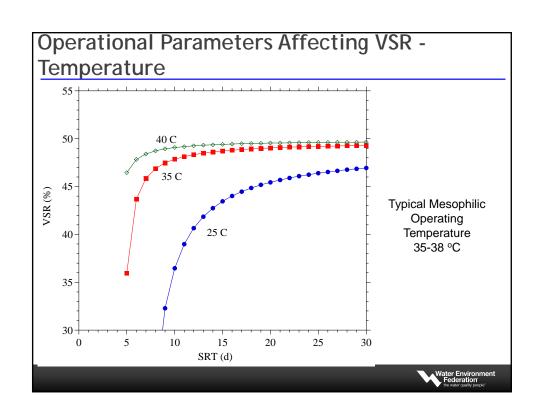
Volatile Solids Reduction by Van Kleek Equation

$$VSF_{in} = \frac{VS_{in}}{TS_{in}}$$

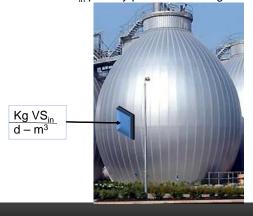
$$VSF_{out} = \frac{VS_{out}}{TS_{out}}$$


VSR by Van Kleek = 100 *
$$\left(\frac{\text{VSF}_{in} - \text{VSF}_{out}}{\text{VSF}_{in} + \text{VSF}_{out}}\right)$$




Typical VSRs

Feed Stocks	VSR
Waste Activated Sludge (WAS)	25-40%
Primary Sludge (PS)	40-65%
Food Wastes	75-85%
Fats, Oils and Grease (FOG)	80-95%



Digester Operational Parameters Organic Loading Rates

Volatile Solids Loading Rates = mass of VS fed per day per unit volume of digester. Typical "Textbook" Values:

- a. kg VS_{in} per day per cubic meter of digester volume (1-3 kg VS/d-m³)
- b. Ib VS_{in} per day per cubic ft of digester volume (0.06-0.30 lb VS/d-ft³)

OLR don't consider:

- a. What is in your digester
- b. Nature of wastes
- c. Operational conditions

Higher OLRs can be readily achieved with good operations

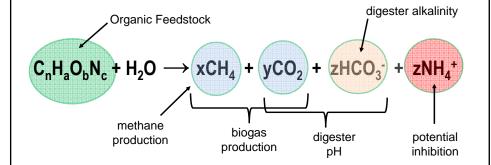
Digester Operational Parameters Specific Organic Loading Rates

Specific Organic Loading Rate considers 'biomass' in digester

= grams of COD_{in} per day, per gram of VS in digester

Current Guideline:

$$SOLR = \frac{g COD_{in}}{d \cdot g VS in digester} < 0.3$$



Anaerobic Digestion Operational Parameters

Parameter	Importance	Stable Operating Ranges
рН	Master variable for digester operation	6.7-7.8
Alkalinity	Helps buffer pH changes	>1000 mg/L as CaCO ₃
VFAs or VAs	Increase in concentrations an indicator of potential upset	<300 mg/L
VA/Alkalinity	Ratio of Volatile Fatty Acids to Alkalinity Ratio, increases mean process changes	<0.2
Biogas Composition (CH ₄ /CO ₂ Ratio)	Decreases in CH ₄ content can mean process changes and inhibition	>55%

Theoretical General Equation (Buswell, 1952)

x, y and z are a function of n, a, b, and c

Stoichiometry	of Anaerobic	Digestion
,		3

Туре	Formula	Source
Waste Activated	C _{6.6} H ₁₂ O _{2.4} N	Bucknell Data (average of 8 plants)
Primary Sludges	C ₁₇ H ₃₁ O _{7.2} N	Bucknell Data (average of 5 plants)
Food Waste	C ₁₇ H ₃₀ O ₆ N	Bucknell Data (average of 3 different FWs)
Fats	C ₁₆ H ₃₂ O ₂	Rittman and McCarty
Carbohydrate	C ₆ H ₁₀ O ₅	Rittman and McCarty
Protein	C ₁₆ H ₂₄ O ₅ N ₄	Rittman and McCarty
	10 21 0 4	Water Environment Federation Federation

Biogas Production

Feed Stock		$ \frac{\text{Methane Yield}}{\left(\frac{\text{L CH}_4}{\text{kg VS}_{\text{fed to digester}}}\right) } $	VSR
Primary Sludge	660	360	55%
Waste Activated	625	250	40%
Food Waste	650	560	80%
FOG (Fats, Oil, Grease)	980	880	90%
Sugars	440	400	90%
Protein	580	520	90%

Notes on EPA Regulatory Requirements

Class B Biosolids:

- · assumes pathogens are present
- site restrictions are used for land application to ensure public safety
- product is stable, vector attraction reduction is met

Several Options for Demonstrating Class B Requirements

- 1. VSR > 38% for vector attraction reduction
- 2. Monitor fecal coliforms: < 2 million per gram dry solids
- 3. Demonstrate digestion meets time and temperature requirement = 15 days at > 35 °C

Notes on EPA Regulatory Requirements

Class A Biosolids:

- pathogens levels below detection
- no site restrictions for beneficial reuse
- stable product that meets vector attraction reduction

Several Options for Demonstrating Class B Requirements

- 1. >38% VSR for vector attraction reduction
- 2. Monitor fecal coliforms: < 1000 per gram dry solids
- 3. Monitor Salmonella: < 3 MPN/gram dry solids

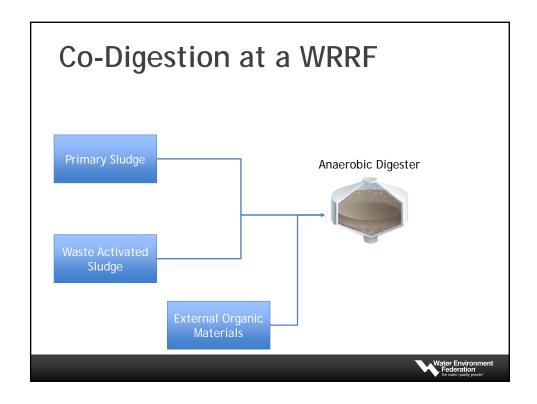
Summary

Anaerobic digestion is a sustainable approach to treating organic wastes:

- produces renewable energy
- produces a product that recycles organics and nutrients
- can be used to meet EPA requirements for biosolids
- stable operations require regular monitoring and good practices

Matt Van Horne, PE

- 14 years experience
- Specializes in biosolids, energy management and wastewater treatment facilities
- Principal Investigator for WE&RF project on the operational impacts of co-digestion


Agenda

- What is co-digestion?
- Why consider co-digestion?
- System configuration
- System control
- Lessons learned

What is Co-Digestion?

What Are Possible External Sources of Material?

- Fats/oils/grease (FOG)
- Pre-consumer food waste
- Post-consumer food waste
- Industrial waste organics

What Are Possible External Sources of Material?



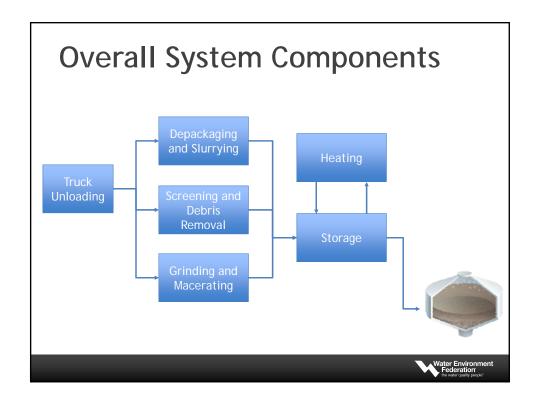
Why Consider Co-Digestion?

Increasing Gas Production

- More incoming organics can result in more digester gas produced
- More change the economics of beneficial utilization

Increase Utility Revenue

- Tipping fees
- More biosolids to sell
- More energy to sell externally



Collection System Benefits

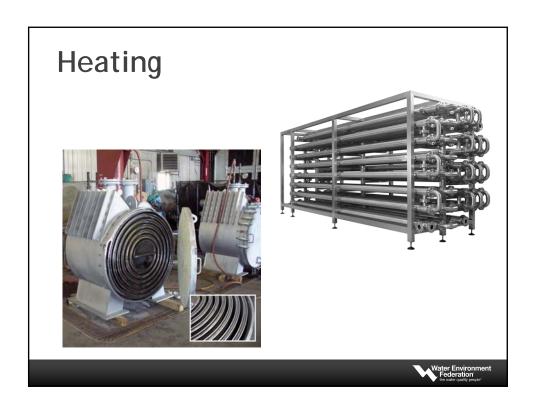
 Remove problematic materials (FOG) from collection system with appropriate outlet

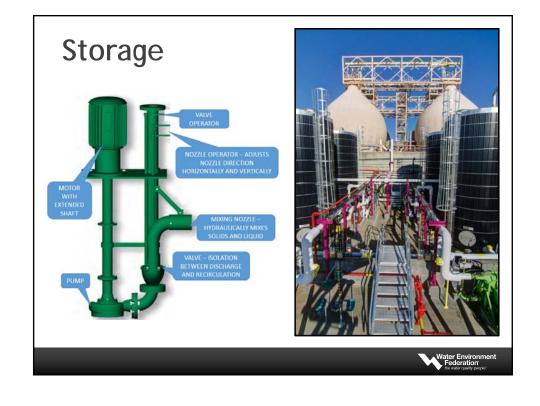
System Configuration Well-Environment Environment Federation

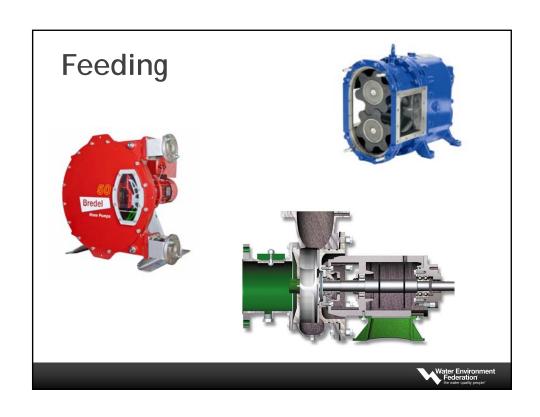
Truck Unloading

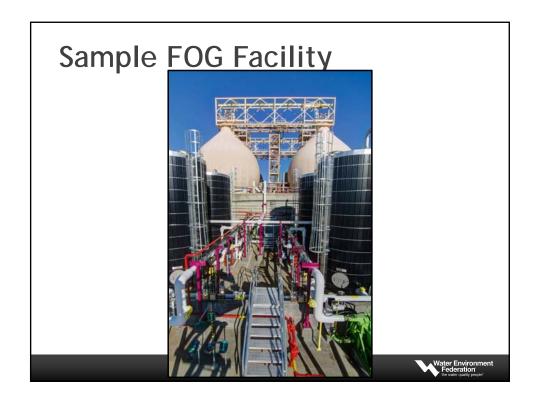
Depackaging/Slurrying

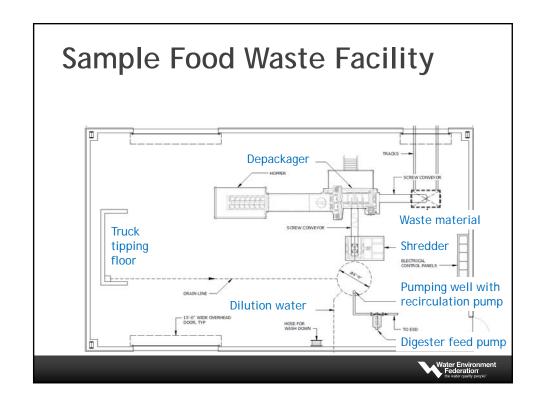
Screening/Debris Removal




Grinding/Macerating




Sample FOG Facility



Digester Considerations

- Increased solids content mixing
- Increased organic loading gas handling and foaming/RVE control
- Digested solids production

Key Points

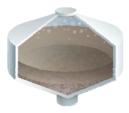
- Can be many new steps
- Harsh characteristics of material
- Odor management
- Design for reliability
- Design for maintenance access

System Control

What Are We Really Trying to Control?

- Digester performance is key
 - Loading rates
 - Quality of materials for digestion
 - Mixing system performance

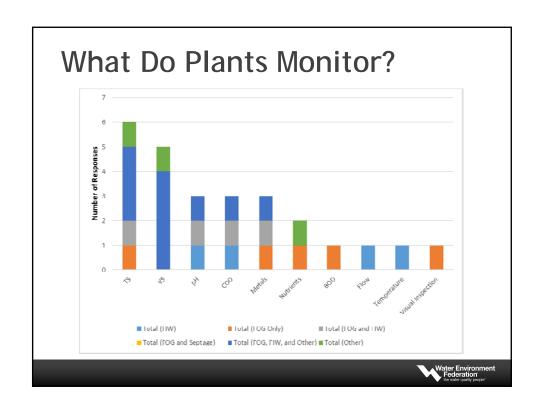
How Do We Monitor and Control This?

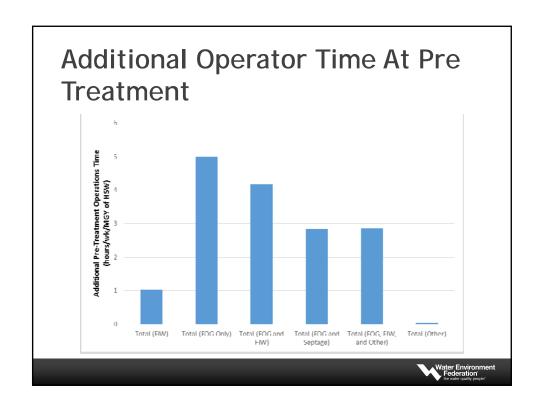

- Feedstock monitoring
 - pH
 - Total solids
 - Volatile solids
 - Toxicity
- Take samples from each batch received!

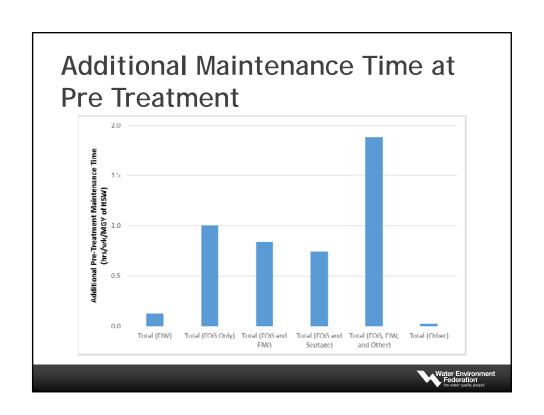
How Do We Monitor and Control This?

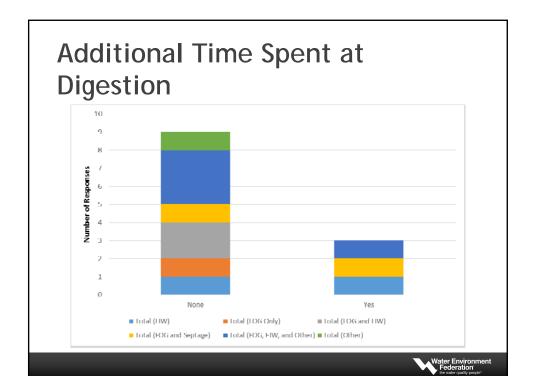
- Digester monitoring
 - pH
 - Volatile acid concentrations
 - Alkalinity
 - Foaming
 - Temperature
 - Feed rates
 - Volatile solids

But What Does This Really Mean?


- Continue normal digester monitoring and sampling
 - Maybe small expansion of parameters
- Become familiar with received materials
 - Understand how the digesters react to different materials
 - Can be simple flow rate control


Lessons Learned


3	n
Ongoing Projects	Number
Energy Balance and Reduction Opportunities, Case Studies of Energy-Neutral Wastewater Facilities and Triple Bottom Line (TBL) Research Planning Support	ENER1C12
Identification of Barriers to Energy Efficiency and Resource Recovery at WRRFs and Solutions to Promote these Practices.	ENER7C13
Developing Solutions to Operational Side Effects Associated with Co-Digestion of High Strength	ENERôR13
Low Energy Alternatives for Activated Sludge - Advancing Anaerobic Membrane Bioreactor Research	ENER4R12
Research to Advance Energy Production and Recovery from Wastewater and Solids	ENER5C12
State of the Science and Issues Related to Heat Recovery from Wastewater	ENER10C13
Guidelines for Utilities Wishing to Conduct Pilot Scale Demonstrations	ENER11R13
Co-digestion of Organic Waste – Addressing Operational Side-effects	ENER9C13



Future Work Efforts for Co Digestion

- There is no standard approach to monitoring codigestion systems;
- Operational impacts vary widely based on the type and quantity of material co digested;
- Few major operational impacts were reported; and,
- The industry would benefit from additional guidance for how to best manage operations of co-digestion facilities.

Questions and Answers

Matt Van Horne, P.E. <u>mvanhorne@hazenandsawyer.com</u> 703-267-2738

Thermal Hydrolysis Operating Considerations

Peter Loomis, PE

- 29 years experience in wastewater and biosolids
- Led commissioning, startup and 2 years of operations at Blue Plains for TH/Digestion
- Oversaw installation/ commissioning of Ringsend TH/Digestion expansion in 2008

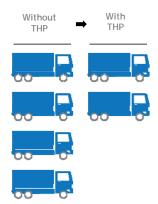
Thermal Hydrolysis Operating Considerations

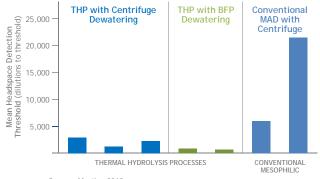
Agenda

- 1. Thermal Hydrolysis Background and History
- 2. Operations at DC Water
- 3.TH/Digestion Operating Results
- 4. Lessons Learned

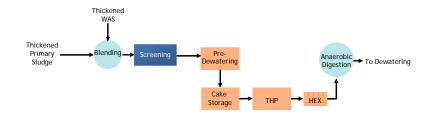
Thermal Hydrolysis - Background and History

Thermal Hydrolysis (THP) is a process by which sludge is heated and pressurized with the purpose of reducing organic solids to make them more readily biodegradable....


In other words, it's a pressure cooker.


Why THP?

- Class A biosolids
- Increased downstream processing capacity
- Increased VSR biogas
 - Projected 10-15% VSR increase
 - Reduced digested solids production
 - Potential energy neutrality
- Increased cake solids content
 - 10% increase
- Reduced digester foaming ...and reduced odor


Lower Odor of THP Biosolids Could Open Product Use Opportunities

Source: Murthy, 2012

THP System Overview

THP Background - History

- First full scale THP system commissioned in 1995 by Cambi
- HIAS plant Lillehammer, Norway
- Original vessels are still in operation
- Kruger/Veolia 1st pilot plant 2004 (Biothelys) full scale ~2009.
- Kruger/Veolia 1st Exelys plant 2014
- First US Installation DC Water Operational October 2014 (Cambi)
- 8 US THP Facilities in planning/design/construction

THP Background - Manufacturers

- Cambi ~50 facilities. 1 in US. 8 Additional in US in next 3 years.
- Veolia/Kruger 2 types
 - Biothelys continuous batch ~7 facilities + 1 US pilot
 - Exelys continuous 2 facilities + 1 demonstration
- Sustec 2 full scale, 3 pilot
- Haarslev 2 pilot scale plants

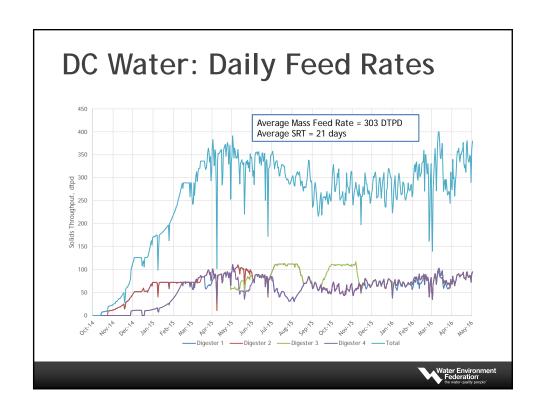
DC Water: First Operating THP Facility in North America

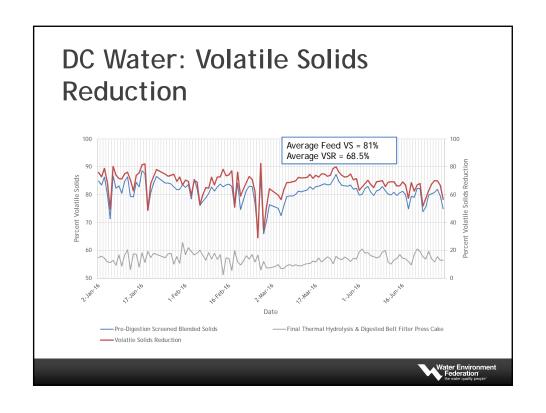
DC Water: Operations

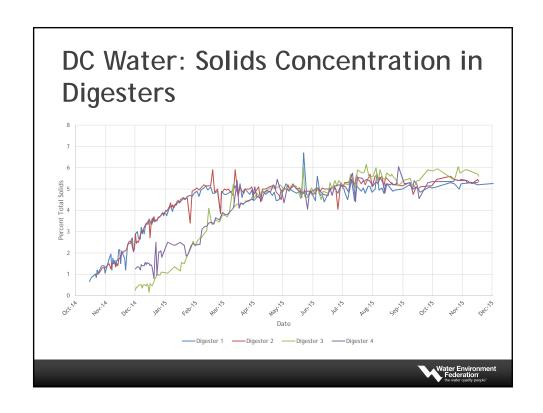
- Implemented THP/digestion with seeding beginning in October 2014
- Full throughput in February 2015
- Full acclimatization in late 2015
- Temporary approval for Class B land application February 2015
- Approval for Class A land application in May 2016

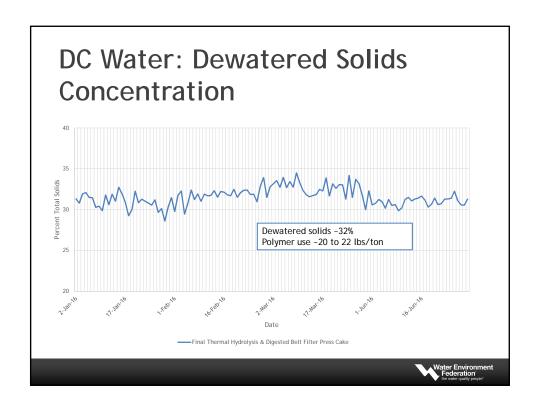
DC Water: Operations Controls

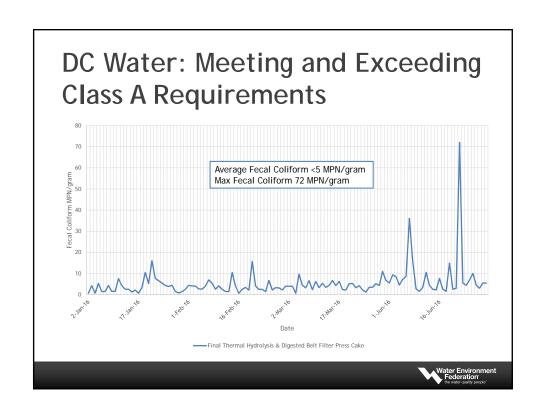
- Key Control Issues
 - Feed Concentration
 - THP Feed Rate
 - Reactor Temperature
 - Dilution Control
 - Digester Temperature Control
 - Steam Pressure

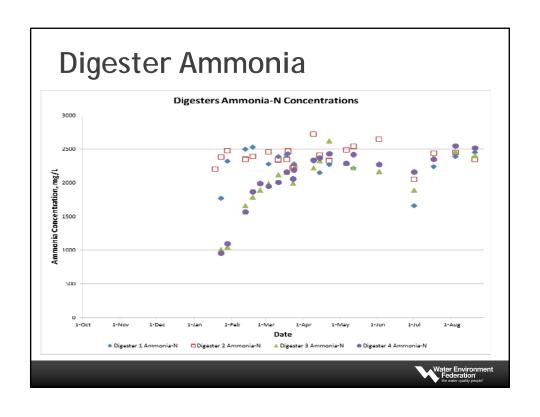



DC Water: Biosolids Operating Results


- VSR 65% to 70% (January to June 2016)
- SRT/HRT at ~20 days
- Fecal coliforms <5 MPN/Gram
- Approximately 500 wet tons per day produced
- Generating 8 to 10 MW of power
- Waste heat from power generation providing steam







Hydrolyzed Sludge Settling

1 minute

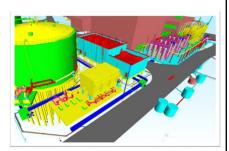
90 minutes

28 hours

Sludge Cooling

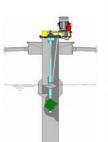
DC Water

- Approach
 - 2 Cooling HEX & 1 Tuning HEX per digester
 - Cooling HEX cools incoming solids
 - Tuning HEX provides "trim" cooling of digesting solids


- Cooling HEX Maintain Digester Temperatures
- Tuning HEX loses significant heat in winter

Cooling Water

- DC Water
 - Plant Effluent (10 MGD Pump Station)
 - Maximum Water Temp. of 81°F
 - Chlorine addition to prevent biofouling
 - Apparent precipitate fouling of water side
 - Microbially Induced Corrosion



Lesson Learned: Cooling water supply is critical for conceptual design

Digesters

- Draft Tube Mixing
- Rapid Rise Control via overflow to ground
- No supplemental gas storage
- No Field Analysis Capabilities

DC Water: Operating Issues

- Mechanical Issues
 - Rotary Lobe Pumps
 - Cake Bin Gates
 - Centrifuge Solids Control
 - Wear on Mechanical Equipment
- Process Issues
 - Vivianite
 - Grit
 - Foam
 - Odors
- Support Equipment Issues
 - Steam Pressure
 - Flare Exhaust Results
 - Dilution Control

DC Water: Results and Observations Summary

Solids throughput approximately doubled standard mesophilic digesters

Concentration in digesters exceeds 5%

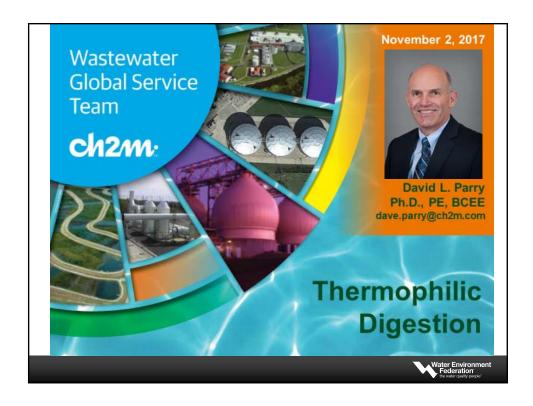
Little or no foam with reactors at 165°C

Digesters resilient to feed changes

At 50% Primary/50% Secondary Solids VSR improved by 20% to 30% (50% VSR to 65% VSR)

Gas yield proportionally higher with VSR

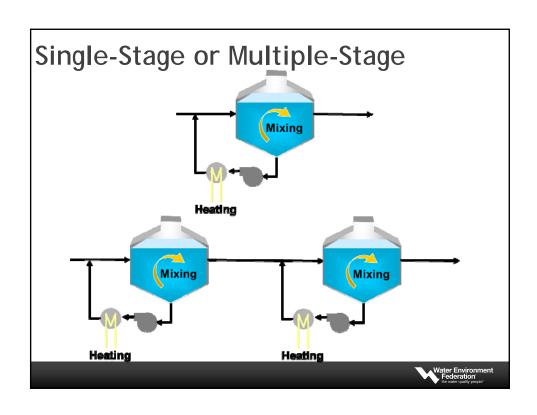
Digested solids release water better


Low odor from digested/dewatered solids after 24 to 48 hours

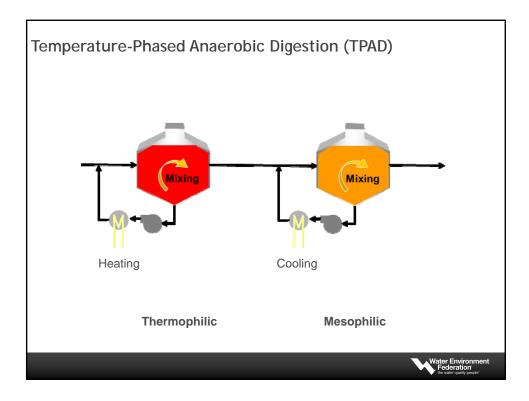
Questions?

Peter M. Loomis, PE 703.691.6442 loomispm@cdmsmith.com




Why Thermophilic Digestion?

- Increased digester capacity
- Class A Biosolids when time temperature requirement is met
- Cost savings from fewer digesters
- Meet site constraints



Thermophilic Compared to Mesophilic Anaerobic Digestion

Advantages

- Increased digester capacity
- Increased solids destruction
- Greater biogas production
- Possible decrease in hydrogen sulfide in biogas
- Improved biosolids quality
- Class A biosolids with batch process

Disadvantages

- Higher operating temperatures
- Increased heat demand
- Requires more heat exchangers
- Possible increase in siloxanes in biogas
- Increased odor at dewatering

Converting from Mesophilic to Thermophilic

- Digesters must be able to structurally handle thermophilic temperatures
- Additional heat exchangers are required for sludge heating
- Heat recovery exchangers may be added for energy efficiency
- Digester heating system must be able to supply more heat at a higher temperature

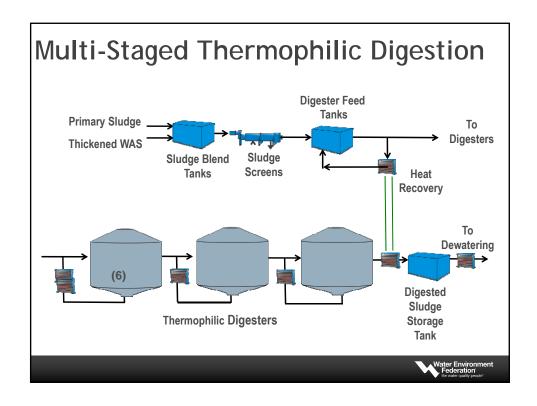
Targeted Parameters for Digester Monitoring

Parameter	Target Range
рН	6.8 to 7.7
Temperature	Mesophilic 35 deg C (95 deg F)
	Thermophilic 55 deg C (130 deg F)
Volatile Solids Reduction	greater than 50%
Volatile Acids (VA)	less than 1,000 mg/L
Alkalinity (ALK) as CaCO ₃	Mesophilic: greater than 1,000 mg/L
	Thermophilic: greater than 2,000 mg/L
Ammonia	less than 2,000 mg/L NH ₃ -N
VA/ALK Ratio	less than 0.2 or declining
	(preferred under 0.1)
CO ₂ in Digester Gas	less than 40% by volume
CH ₄ in Digester Gas	greater than 60% by volume
Specific Biogas Production	greater than 0.9 Nm³/kg_VSR
	(15 scf/lb_VSR)
Foaming	little or none

Examples of Thermophilic Digestion Operations

- Los Angeles, CA
- Oakland, CA
- San Francisco, CA
- St Joseph, MO

- Duluth, MN
- Columbus, GA
- Vancouver, BC
- Tel Aviv, Israel



Dan Region WWTP (SHAFDAN)

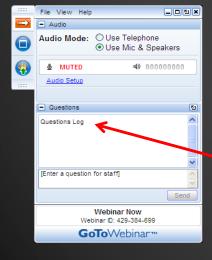
Thermophilic Heat Supply: 11 MW Cogeneration System with Eight 1.4 MW Packaged Units

- Heat supply system designed for thermophilic temperatures and engine heat recovery
- Boilers provide heat for startup and backup heat

Dan Region Shafdan WWTP, Tel Aviv, Israel,

Thermophilic Digestion Summary

- Advantages for capacity, Class A, cost savings, tight site
- Anaerobic digestion at 125 140 degrees F (50 - 60 degrees C)
- Differences between thermophilic and mesophilic digestion
- Same key control variables as mesophilic digestion
- Mesophilic digesters can be converted to thermophilic digesters
- Examples of thermophilic digestion systems


Water Environment Federation the water quality people'

Questions?

David L. Parry Ph.D., PE, BCEE dave.parry@ch2m.com

Questions? How to Participate Today

- Audio Modes
 - Listen using Mic & Speakers
 - Or, select "Use Telephone" and dial the conference (please remember long distance phone charges apply).
- Submit your questions using the Questions pane.
- A recording will be available for replay shortly after this webcast.

