





| How to Par                                            | rticipate Today                                                                                                                             |
|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Audio                                                 | Audio Modes                                                                                                                                 |
| Audio Mode: OUse Telephone                            | <ul> <li>Listen using Mic &amp;<br/>Speakers</li> </ul>                                                                                     |
| Audio Setup  C Questions C                            | <ul> <li>Or, select "Use<br/>Telephone" and dial the<br/>conference (please<br/>remember long distance<br/>phone charges apply).</li> </ul> |
| [Enter a question for staff]                          | <ul> <li>Submit your questions using<br/>the Questions pane.</li> </ul>                                                                     |
| Webinar Now<br>Webinar D: 429-384-699<br>GoToWebinar™ | <ul> <li>A recording will be available<br/>for replay shortly after this<br/>webcast.</li> </ul>                                            |
|                                                       | Water Environment<br>Federation<br>The water water of proper                                                                                |













# So is it slime? Or fixed film? Or Biofilm?

- *Biofilm* is the official terminology for WEF and the larger scientific community
- "cells immobilized at a substratum and frequently embedded in an organic polymer matrix [EPS] of microbial origin" - Characklis and Marshall 1990

















# Mass transfer is the most critical consideration for biofilms

100x 50 μm

Water Environ

Also important for activated sludge systems!











# Mixing is a critical part of biofilm reactor design and modeling





## Next Speaker



**Oliver Schraa, M.Eng.** Chief Technical Officer inCTRL Solutions Inc. Oakville, Ontario, Canada



Water Environ Federation



14

# <section-header><list-item><list-item><list-item><list-item><list-item><list-item>























































# Model Setup and Calibration

- Key Additional Steps for Biofilm Reactors
  - Reactor physical parameters:
    - Carrier surface area and reactor fill fraction

Water Environ Federation

- Density of biofilm
- Number of biofilm layers
- Calibration parameters:
  - Liquid boundary layer thickness
  - Biofilm detachment rate
  - Diffusion reduction in biofilm



































### Summary

- Biofilm reactor modeling is similar to suspended growth modeling but more information is required for model setup
- Biofilm reactors are mass transfer limited and models are useful in studying how this impacts reactor design and control
- The key input parameters are:
  - Carrier surface area, water displaced by media, and reactor fill fraction
  - Density of biofilm
  - Number of biofilm layers
  - Liquid boundary layer thickness

Water Environn Federation





#### References

Henze, M., Harremoës, P., Jansen, J.I.C. and Arvin, E. (2002). *Wastewater Treatment*. 3rd edition. Springer, Berlin.

Lewandowski, Z. and Boltz, J.P. (2011). *Biofilms in Water and Wastewater Treatment*. In: Peter Wilderer (ed.) Treatise on Water Science, vol. 4, pp. 529-570 Oxford: Academic Press.

Morgenroth, E. (2008). *Modelling Biofilms*. In: Henze, M., van Loosdrecht, M.C.M., Ekama, G.A., and Brdjanovic (ed.) Biological Wastewater Treatment: Principles, Modelling and Design., IWA Publishing, London, UK.

Ødegaard, H. (1999). *The Moving Bed Biofilm Reactor*. In: Igarashi, T., Watanabe, Y., Asano, T. and Tambo, N. (ed.) Water Environmental Engineering and Reuse of Water, Hokkaido Press 1999, p. 250-305.

Wallis-Lage, C., Johnson, T., Hemken, B. and Sabherwal B. (2006). New Technologies Force Change from Traditional Design-Bid-Build Strategy. Proceedings of WEFTEC 2006, Oct. 21-25, Dallas, TX, USA.

Wanner, O., Eberl, H.J., Morgenroth, E., Noguera, D.R., Picioreanu, C., Rittmann, B.E. and van Loosdrecht, M.C.M. (2006). *Mathematical Modeling of Biofilms*, IWA Publishing, London, UK. Series: Scientific and Technical Report Series Report No. 18.

Water Environn Federation

# Next Speaker





## Key outline points

- Introduction to model applications
- Basic model/design requirements
- MBBR case study/applications
- Summary



Water Environ Federation













## Modeling MBBR applications

#### A. Case studies

- 1. Broomfield WWTP, Colorado, USA
- 2. James river treatment plant, VA, USA

#### B. Other applications

- 1. Volumetric loading verses surface area loading
- 2. Comparing footprint of an MBBR versus and activated sludge process
- 3. Evaluating robustness of an MBBR process versus and activated sludge process

Water Environr Federation

4. Improving capacity of an MBBR system











|                                                                                                                       | Values              | Units           | Comments                                                                                                                                                                                          |                                                                                    |                                                                 |                                                     |
|-----------------------------------------------------------------------------------------------------------------------|---------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------|
| Suspended biomass, MLSS                                                                                               | 1630                | g/m3            |                                                                                                                                                                                                   |                                                                                    | Ded                                                             |                                                     |
| Aerobic 1 fixed biomass                                                                                               | 2050                | g/m3            | Measured data                                                                                                                                                                                     |                                                                                    | Reu                                                             | are                                                 |
| Aerobic 2 fixed biomass                                                                                               | 1104                | g/m3            |                                                                                                                                                                                                   |                                                                                    | mo                                                              | del                                                 |
| Volume per cell                                                                                                       | 2271                | m3              | Design                                                                                                                                                                                            |                                                                                    | inp                                                             | uts                                                 |
| Effective surface area                                                                                                | 150                 | m2/m3           | Manufacturer's data                                                                                                                                                                               |                                                                                    |                                                                 |                                                     |
| Total surface area per cell                                                                                           | 340650              | m2              | Calculated                                                                                                                                                                                        |                                                                                    |                                                                 |                                                     |
| Biomass Aerobic 1 per surface area                                                                                    | 13.7                | kg/1000 m2      | Coloulated                                                                                                                                                                                        |                                                                                    |                                                                 |                                                     |
| Biomass Aerobic 2 per surface area                                                                                    | 7.4                 | kg/1000 m2      | Calculated                                                                                                                                                                                        |                                                                                    |                                                                 |                                                     |
|                                                                                                                       |                     |                 |                                                                                                                                                                                                   |                                                                                    |                                                                 |                                                     |
|                                                                                                                       |                     |                 |                                                                                                                                                                                                   |                                                                                    |                                                                 |                                                     |
| Biofilm thickness Aerobic 1                                                                                           | 1.1                 | mm              | Calculated from                                                                                                                                                                                   |                                                                                    |                                                                 |                                                     |
| Biofilm thickness Aerobic 1<br>Biofilm thickness Aerobic 2                                                            | 1.1<br>0.6          | mm<br>mm        | Calculated from density 12.5 kg/m3                                                                                                                                                                |                                                                                    |                                                                 |                                                     |
| Biofilm thickness Aerobic 1<br>Biofilm thickness Aerobic 2                                                            | 1.1<br>0.6          | mm<br>mm        | Calculated from<br>density 12.5 kg/m3                                                                                                                                                             |                                                                                    | Value                                                           | Unit                                                |
| Biofilm thickness Aerobic 1<br>Biofilm thickness Aerobic 2                                                            | 1.1<br>0.6          | mm<br>mm        | Calculated from<br>density 12.5 kg/m3<br>Name<br>Number of biofilm                                                                                                                                | layers plus one                                                                    | Value                                                           | Unit                                                |
| Biofilm thickness Aerobic 1<br>Biofilm thickness Aerobic 2<br>Aerobic Aero                                            | 1.1<br>0.6<br>bic2  | mm<br>mm        | Calculated from<br>density 12.5 kg/m3<br>Name<br>Number of biofilm<br>Biofilm thickness                                                                                                           | layers plus one                                                                    | Value<br>4<br>1.10                                              | Unit                                                |
| Biofilm thickness Aerobic 1<br>Biofilm thickness Aerobic 2<br>Aerobic Aero                                            | 1.1<br>0.6<br>bic2  | mm<br>mm        | Calculated from<br>density 12.5 kg/m3<br>Name<br>Number of biofilm<br>Biofilm thickness<br>Boundary layer th                                                                                      | layers plus one                                                                    | Value<br>-4<br>1.10<br>0.030                                    | Unit<br>mm<br>mm                                    |
| Biofilm thickness Aerobic 1<br>Biofilm thickness Aerobic 2<br>Aerobic Aero                                            | 1.1<br>0.6<br>bic2  | mm<br>mm        | Calculated from<br>density 12.5 kg/m3<br>Name<br>Number of biofilm<br>Biofilm thickness<br>Boundary layer th<br>Biofilm specific m                                                                | layers plus one<br>ickness<br>ass                                                  | Value<br>•4<br>1.10<br>0.030<br>13.70                           | Unit<br>mm<br>gTSS.m-2                              |
| Biofilm thickness Aerobic 1<br>Biofilm thickness Aerobic 2<br>Aerobic Aero                                            | 1.1<br>0.6<br>bic2  | mm<br>mm        | Calculated from<br>density 12.5 kg/m3<br>Name<br>Number of biofilm<br>Biofilm thickness<br>Boundary layer th<br>Biofilm specific m<br>Biofilm density                                             | layers plus one<br>ickness<br>ass                                                  | Value<br>-4<br>1.10<br>0.030<br>13.70<br>12.5                   | Unit<br>mm<br>gTSS.m-2<br>kg/m3                     |
| Biofilm thickness Aerobic 1<br>Biofilm thickness Aerobic 2<br>Aerobic Aero                                            | 1.1<br>0.6<br>bic2  | mm<br>mm        | Calculated from<br>density 12.5 kg/m3<br>Name<br>Number of biofilm<br>Biofilm thickness<br>Boundary layer th<br>Biofilm specific m<br>Biofilm density<br>Specific surface of                      | layers plus one<br>ickness<br>ass<br>f biofilm carrier                             | Value<br>4<br>1.10<br>0.030<br>13.70<br>12.5<br>500.00          | Unit<br>mm<br>gTSS.m-2<br>kg/m3<br>m2.m-3           |
| Biofilm thickness Aerobic 1<br>Biofilm thickness Aerobic 2<br>Aerobic Aero<br>Aerobic O Aero<br>0 - 4.3 mg02/l D0 - 5 | 1.1<br>0.6<br>0bic2 | mm<br>mm<br>2/l | Calculated from<br>density 12.5 kg/m3<br>Name<br>Number of biofilm<br>Biofilm thickness<br>Boundary layer th<br>Biofilm specific m<br>Biofilm density<br>Specific surface c<br>Ratio of reactor v | layers plus one<br>ickness<br>ass<br>f biofilm carrier<br>olume filled by carriers | Value<br>-4<br>1.10<br>0.030<br>13.70<br>12.5<br>500.00<br>0.30 | Unit<br>mm<br>gTSS.m-2<br>kg/m3<br>m2.m-3<br>m3.m-3 |

















































| Same volumetric loading rate                                                                     |              |           |                    |       |                                                             |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------|--------------|-----------|--------------------|-------|-------------------------------------------------------------|--|--|--|--|--|--|
| Surface                                                                                          | area loading | g         | Volumetric loading |       |                                                             |  |  |  |  |  |  |
| Name                                                                                             | Plant        | Unit      | Name               | Plant | Unit                                                        |  |  |  |  |  |  |
| SALA                                                                                             | 10.2         | g.d-1.m-2 | VLA                | 1275  | g.d-1.m-3                                                   |  |  |  |  |  |  |
| SALB                                                                                             | 5.1          | g.d-1.m-2 | VLB                | 1275  | g.d-1.m-3                                                   |  |  |  |  |  |  |
| SALC                                                                                             | 3.4          | g.d-1.m-2 | VLC                | 1275  | g.d-1.m-3                                                   |  |  |  |  |  |  |
| SARA                                                                                             | 3.7          | g.d-1.m-2 | VRA                | 466   | g.d-1.m-3                                                   |  |  |  |  |  |  |
| SARB                                                                                             | 1.6          | g.d-1.m-2 | VRB                | 402   | g.d-1.m-3                                                   |  |  |  |  |  |  |
| SARC                                                                                             | 1.0          | g.d-1.m-2 | VRC                | 378   | g.d-1.m-3                                                   |  |  |  |  |  |  |
| <ul> <li>Surface area removal</li> <li>420 gCOD/m3 to achieve same volumetric loading</li> </ul> |              |           |                    |       |                                                             |  |  |  |  |  |  |
|                                                                                                  |              |           |                    |       | Water Environment<br>Federation<br>the water quality people |  |  |  |  |  |  |

















- Existing models follow a variety of design guidelines and match experimental data including full-scale plant operation
- Garbage "In" means garbage "Out"
- Identifying process limitation
- Well calibrated models help useful scenario runs for design and operation improvements
- Other applications
  - Smaller footprint
  - Robust performance
  - Increase capacity
- These applications can be used on a single plant to uograde for nutrient removal

Water Enviro







