

Take away messages

- Sanitation is critical for disease prevention, social wellbeing and economic development.
- Sanitation under the spotlight- opportunity to accelerate progress:
 - Safely managed services
 - Eliminating OD
 - Hygiene
 - Beyond household Healthcare facilities, schools
 - Inequalities
 - Understanding enabling environment
- Collaboration between multiple sectors is essential.

Dr Michael Templeton

Reader in Public Health Engineering

Department of Civil and Environmental Engineering

Imperial College London

Water Environme Federation the water quality people"

SDG Goal 6: Clean water and sanitation (excerpts)

• **6.2** By 2030, achieve access to adequate and equitable sanitation and hygiene <u>for all</u> and end open defecation, paying special attention to the needs of women and girls and those in vulnerable situations

• **6.3** By 2030, improve water quality by reducing pollution, eliminating dumping and minimizing release of hazardous chemicals and materials, <u>halving the proportion of untreated</u> <u>wastewater</u> and substantially increasing recycling and safe reuse globally

What's the problem with pit latrines?

- They can become unhygienic and unpleasant
- They fill up eventually
- They may contaminate soil and groundwater
- . They may be too expensive for the intended users
- Their design sometimes does not consider the range of users nor user preferences

- Better alternatives are still needed
- · Many people aspire to climb the 'sanitation ladder'

The sanitation challenge

• Not a problem that any single discipline can solve alone!

- · Community-led approaches can be effective
- There can also be benefits of thinking of the whole 'sanitation chain', not just giving people toilets
- There are now interesting business models for services using mobile, container-based sanitation systems
- Try to monitor and quantify the benefits of sanitation (as much as possible) e.g. health, time-saving
- Capacity-building and knowledge transfer should be core objectives of any sanitation project

Dr Joël Nkiama N. Konde

Associate Professor Department of Environmental Health University of Kinshasa School of Public Health

Water Environme Federation the water quality people

Stressors affecting pathogen inactivation in fecal sludge

- 3 categories of stressors: physical, chemical, and biological factors
 - Physical: temperature, cavitation, desiccation, and irradiation (gamma and beta)
 - Chemical: pH variation, exothermal production of energy, oxidation, reduction, or oxidation-reduction reactions, production of noncharged disinfectants
 - Biological: auto thermal biological activity, reduction of the degradable organics, production of biocidal agents
- At least 4 to 7 stressors affect pathogen in each disinfection process

511 63301 3										
Biosolids Disinfection Process	# of stressors	Exposure time	Hd	Irradiation	Temperature	Solids content	Ammonia (NH ₃)	Organic by- products	Drying	Cavitation/Ultra sound
Composting	6	+	-	-	+	+	±	+	+	-
Anaerobic digestion	6	+	-	-	+	+	+	+	-	+
Aerobic digestion	4	+	-	-	+	+	-	-	-	+
Lagoon storage	5	+	-	-	+	+	+	+	-	-
Air & Heat drying	5	+	-	+	+	+	-	-	+	-
Alkaline stabilization	7	+	+	-	+	+	+	-	+	-
High energy irradiation	6	+	-	+	+	-	+	-	±	+

Criteria for Treatment technologies selection

Choice based on an holistic approach accounting for:

- Treatment goal
- Simple design and operations
- Safe management alternatives stressing reclamation of resources

- Social, economic and environmental characteristics
- Promotion of sustainability

MICROBIAL INDICATORS IN THE 21ST CENTURY

ERA OF MOLECULAR METHODS

WHICH INDICATORS TO USE, HOW AND WHY?

Gary A. Toranzos, Ph.D.

Professor of Microbiology

University of Puerto Rico

gary.toranzos@upr.edu

Science Questions that drove EPA Research

- 1. What is the risk to human health from swimming in water contaminated with human fecal matter vs. swimming in water contaminated with non-human fecal matter?
- 2. Do culture and molecular methods for various indicators correlate with swimming-related illnesses?
- 3. Are indicators, methods and models suitable for use in different types of waters and for different CWA programs?

WHAT DO INDICATORS "INDICATE"?

- 1. Indicators are tools depending on what we need them for (TX efficiency, water quality)
- 2. Current Indicators **are not "pathogens"** and therefore their presence **does not indicate "real and present danger"**
- 3. Indicators indicate a **statistical probability of risk** to the user/consumer
- 4. Presence of **indicators indicate their presence**, which is then statistically correlated to a certain level of risk.

Known unknowns

• Traditional fecal indicators (FIBs????)

- Sources are fecal and non-fecal
- Less indicative of health risk when sewage is not a significant or obvious source
- Spatial & temporal variability differs from pathogens

• Newer indicators (e.g. *Bacteroidales*, enterophages)

- Ecological sources & behavior not understood
- So still reliant on sound sanitary understanding

32

Current regulations and phages

U.S. Environmental Protection Agency. 2006. National primary drinking water regulations: ground water rule; final rule; 40 CFR parts 9, 141, and 142. Fed. Regist. **71:**65574–65660.

Anonymous. 2001. Loi sur la qualité de l'environnement: réglement sur la qualité de l'eau potable c. Q.-2, r. 18.1.1. Gazette Officielle du Québec 24, 3561. Government of Quebec, Montreal, Quebec, Canada.

Queensland Government – Environmental Protection Agency. 2005. Queensland Water Recycling Guidelines. Pp 84.

