

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><list-item><list-item><section-header><text>

Study Approach

- Identify GI installations to be included
 - Wide array of GI practices
 - Small to large scale
 - Public and private property

Water Enviror

- Document conditions of installed urban GI practices over time
 - Periodic site visits
 - Photo documentation

11

result in:

<section-header><section-header><section-header><section-header><section-header><section-header><list-item><list-item><list-item><text>

Conclusions

- Vegetated practices
 - Doing well in general
 - Biggest issue is invasive species (likely cause lack of long-term maintenance plan)
 - Invasives do not affect performance only appearance
- Pervious/porous paving
 - Porous asphalt is doing great everywhere
 - Porous concrete shows signs of some spalling but this seems to be self-limiting over time

Water Environm Federation

Porous pavers do well if sited correctly

Conclusions

- Observational assessments are a quick and simple tool in evaluating the longterm viability of GI practices
- Can be used to pinpoint possible issues that may affect longevity & overall performance

Water Environ

Permeable Pavements Treating Direct Rainfall

Site	Range	Mean CN	Median CN
Swansboro PICP	37–45	44	45
Kinston CGP	70-89	77	79
Omit Hurricane Floyd	66–93	73	69
Wilmington PC	77-89	80	89

- Bean et al. 2007, J. Environmental Engineering
- Impermeable CN = 98

Results ■ Total Rainfall ■ Total Outflow from Underdrains 120 100% 99.5% 78% 100 Reduction Reduction Reduction **Cubic Meters** 80 60 40 20 0 **CONVENTIONAL IWS - DEEP IWS - SHALLOW** Water Envir

(Observe	ed Sto	orm E	vents	
A.	1	T	Ŧ	No.	
Site Name	Monitoring Period	Storm Events (#)	Total Rainfall (mm)	Median Rainfall Depth (mm)	Max Rainfall Depth (mm)
Perkins Township	April 2013 - Dec 2014	89	1281	8.9	65
Willoughby Hills	Oct 2013 - Dec 2014	79	1151	8.1	87
Orange Village	Oct 2013 - Dec 2014	61	789	8.1	89

1-	Water	r Balance	e Summa	ary		" with
1-	Site	Run-on Ratio	Drainage (%)	Surface Runoff (%)	Runoff Reduction (%)	4 1 . Contraction of the
7	РТ	3.8	47	0	53	2
1-	WH small	7.2	76	8	16	1
	WH large	2.2	44	24	32	- Marine
-7	OV	0	1	1050	99	
-7	-1-	7 1	Due to	surface of	clogging	A

<section-header><complex-block><image><image>

Primary Team Members

- Harry Zhang, WRF
- Sybil Sharvelle, Tyler Dell, Mostafa Razzaghmanesh CSU

Water Environ Federation

- Jennifer Cotting, Jennifer Egan UMD EFC
- Christine Pomeroy UU
- Tonya Bronleewe WSU
- Dan Pankani Geosyntec Consultants Inc.
- Jane Clary Wright Water Engineers

National Stormwater Calculator National Stormwater Calculator Tool to help control runoff and promote the natural movement Additional Information of water EPA's National Stormwater Calculator (SWC) is a software application that estimates the annual amount of rainwater and frequency of runoff from a specific site. Estimates are based on local soil conditions, land cover, and historic rainfall records. Users supply information about the site's land cover and then select the low impact development (LID) controls they would like to use. The LID controls include seven green infrastructure practices. The SWC is designed to be used by anyone interested in reducing runoff from a property, including site developers, landscape architects, urban planners, and homeowners. **Modeling Capabilities** Hydrology Analysis. The SWC allows users to analyze site hydrology for small- to medium-sized (less than 12 acres) locations within the United States, including Puerto Rico, using LID controls. It estimates the amount of stormwater runoff generated from a site under different development and control scenarios over a long-term period of historical rainfall.

	CLASIC	NSWC
SCALE	Designed for flexibility in study area size (neighborhood to watershed) Enables variation of parameters within study area subunits Outputs for multiple subunits within study area at once	Designed for site level design and scale of analysis is limited Desktop version (50 acres max) Web version (12 acres max)
INPUTS	Accesses national database on land use and imperviousness to inform hydrologic model	User enters land use data
SCMs	Includes a more comprehensive set of technologies (12 total) 5 additional: sand filter, grass swales, storage vault, extended detention basins, and wet ponds	More flexibility in LID design specs
WATER QUALITY	Includes water quality projections	No water quality projections
CLIMATE	Considers more advanced climate change scenarios (CMIP5 datasets) including flexibility in assessing multiple climate scenarios	Uses older climate change scenarios (CMIP3 datasets)

Output	Included in CLASIC tool
Pollutant	· TSS
Load	· TN
Reduction	· TP
	· FIB
Hydrologic	· Runoff Volume
	· Volume Infiltrated
	· Volume Evapo-transpired
	Number of runoff events
LCC	· Net Present Value
	• Construction
	 Maintenance
	 Rehabilitation
	· Average Annual Cost Over Design Life
	· Per unit cost for scenario comparison
Co-Benefits	· Score of economic, environmental, social
	performance based on user selected
	importance factors and performance output

• Rain Gardens • Sand Filter • Infiltration Trench • Permeable Pavement • Green Roofs • Disconnection • Crass Swales • Extended Detention Basins • Wet Pond • Stormwater Harvesting • Storage Tunnel/Vault • Stream Restoration

Water Envi

