Updates on Novel Coronavirus for Water Professionals

Tuesday February 25, 2020
2:30 - 4:00 PM ET
How to Participate Today

- **Audio Modes**
 - Listen using Mic & Speakers
 - Or, select “Use Telephone” and dial the conference (please remember long distance phone charges apply).

- Submit your questions using the Questions pane.

- A recording will be available for replay shortly after this webcast.
Opening Comments

Walt Marlowe, P.E., CAE
Executive Director
Today’s Moderator

Scott Schaefer, P.E.

Wastewater Practice Leader, AE2S

Chair, WEF Disinfection & Public Health Committee
LESSONS FROM THE EBOLA OUTBREAK
How the water sector can transition from panic to preparedness
Rasha Momal-Benard, Kyle Robby, Kori Briskofka, Lee Gray, Robert S. Raimers, Scott Schaefer, and Jay Swift

Over the last century, humanity has been confronted with various disease outbreaks that have put our resilience to a strain on a scale never before seen. During these outbreaks, public health and health care systems play an unprecedented role in providing treatments, surveillance, and protection against disease-carrying vectors and pathogens. In the face of these unprecedented events, public health systems and water treatment plants are working hard to ensure public health protection, often putting themselves at risk to protect the public.

On July 17, 2019, the World Health Organization (WHO) General Director General declared the ongoing Ebola outbreak in the Democratic Republic of the Congo a Public Health Emergency of International Concern under the International Health Regulations. As we prepare for this growing threat, we must ask whether the water sector is as prepared this time around. So, are we — as water professionals — more prepared today to deal with epidemics that may involve widespread spread of diseases than we were a decade ago?

Epidemics Are Reality
In 1918 and 1919, the world saw the onslaught of the Spanish Influenza, which resulted in the deaths of an estimated 50 to 100 million people. The H1N1 influenza epidemic has killed more than 10 million individuals over the last few decades. Cholera continues to plague many developing countries and is rated as the sixth most common disease. In 2010, severe acute respiratory syndrome (SARS) and the 2015 Ebola virus and 2015–2016 Zika epidemics followed. In addition to the Ebola virus and dengue fever, resistant typhoid fever, polio, and other infectious diseases are still prevalent every day. While it is becoming increasingly difficult to predict what is next and who will be affected, the only thing we know for certain is that outbreaks are inevitable.

Outbreaks, epidemics, and pandemics all pose major health, social, and economic risks. In 2017, the World Bank estimated that a catastrophic pandemic could result in millions of deaths and devours up to 1% of the global GDP (roughly $550 billion or 0.3% of global income). The uncontrolled spread of disease can cause death and devastation to vulnerable communities, as well as to the economies of affected countries. With the unprecedented ability of people, products, and food, and the fact that disease-carrying vectors — called pathogens — are increasingly abundant and mobile, this is no longer an issue that impacts only developing countries. This nation is exposed to the growing global threat posed by an isolated infectious disease outbreak on a seemingly remote part of the world.

The Example of Ebola
An example of the effectiveness and difficulty in controlling outbreaks is what happened between 2013 and 2016 when West Africa experienced the largest outbreak of the Ebola virus ever known. By October 2014, WHO reported 25,477 official cases. Almost all cases were reported in Sierra Leone, Liberia, and Guinea, with about 11,312 deaths, which many experts believe is an underestimate. What few people knew is that the West Africa Ebola outbreak revealed the chink in the armor of the water sector.

Water Environment Federation
the water quality people®
Today’s Speakers

• Mark Sobsey
 ▪ Virus ecology, transmission and detection methods

• Matt Arduino
 ▪ Epidemiology, transmission, and severity

• Christopher Brown
 ▪ OSHA recommendations

• Christine Tomlinson
 ▪ Interagency coordination and emergency response

• Rasha Maal-Bared
 ▪ The Water Professional’s Guide to COVID-19
2019-nCoV, COVID-19 and Wastewater Management

Mark D. Sobsey, PhD
Research Professor
Dept. of Environmental Sciences and Engineering
Gillings School of Global Public Health
University of North Carolina
Chapel Hill, NC 27599-7431
Email: mark_sobsey@unc.edu

• The virus and the disease
• Virus ecology and transmission
• Detection methods
• Survival in feces and wastewater
• Risk to wastewater workers
 – USA
 – Global
• WHO recommendations compared to other recommendations
Introduction to Novel 2019 Coronavirus (2019-nCoV) and the Illness it Causes (COVID-19)

Implications for Wastewater Workers and Measures to Reduce Virus Presence and Infection Risk

Mark D. Sobsey
University of North Carolina
2019-nCoV, COVID-19 and Wastewater Management

- The virus and the disease
- Virus ecology and transmission
- Detection methods
- Survival in feces and wastewater
- Effects of disinfection and other treatment processes
- Risks to wastewater workers
 - USA
 - Global
- WHO recommendations compared to other recommendations
2019-nCOV: a Coronavirus

- A large virus with a lipid outer envelope
- Similar to SARS and MERS coronaviruses
- Zoonotic (goes from animal hosts to people)
 - Bats are main reservoir hosts; arose by mutation
 - Other wild animals caught for food and medicines are hosts that often transmit coronaviruses to people
 - Pangolins (scaly anteaters)?
- First discovered in December 2019 in a Wuhan city, Hubei Province, China “wet” (live animal) market
- Has now spread within China and to many other countries (~39) by infected people
COVID Cases & Deaths Worldwide

Cases = 80,348; Deaths = 2707; Recovered = 27,899; as of 2/24/2020
Epicenter is China; now spreading rapidly and extensively elsewhere
(Numbers from: https://www.worldometers.info/coronavirus/?utm_source=share&utm_medium=ios_app&utm_name=iossmf)
Symptoms of China coronavirus (COVID-19)

- Headache
- Cough
- Muscle pain
- Shortness of breath
- Breathing difficulties
- Fever
- Tiredness

Virus seems to start with a **fever**, followed by a **dry cough** and then, after a week, leads to **shortness of breath** and some patients needing hospital treatment.

Source: WHO
COVID-19 Disease

• Typical respiratory infection: coughing, sneezing, shortness of breath; like other viral respiratory infections
• Illness: most cases (~80%) are mild and people recover
• Some cases (~20%) are severe and require hospitalization
 • Some need mechanical ventilation
• Some develop gastrointestinal illness: diarrhea, vomiting and nausea
• Limited evidence of enteric infection, but plausible
• Virus is in respiratory secretions, blood and sometimes fecal matter; shedding can occur before illness appears
• Incubation period is 2-14 days, typically several days
• Duration of illness: days or longer; mortality: several %
• Duration of virus shedding is days to possibly weeks
• Asymptomatic infection occurs and can cause spread
• Some cases are “superspreaders”; can infect >10 people
COVID-19 Transmission

- Person-to-person by direct contact is a major route
- Virus presence in respiratory secretions is also major source of spread to others by:
 - Secreted droplets (airborne, within a few feet)
 - Secretions (e.g., droplets) on inanimate surfaces
 - Indirect contact; touch surfaces; other fomites
- Virus presence in feces is a potential exposure source
 - Extent of fecal transmission is still uncertain
- Airborne spread from sources (bioaerosols) is uncertain
- Possible evidence of a case from exposure to sewage from faulty toilets and leaky sewage pipes 10 floors above in highrise apartment building in Hong Kong; unconfirmed
- Virus concentrations in respiratory secretions and feces are still unknown, as infectious units or gene copies.
2019-nCOV Detection

- 2019-nCOV is a biosafety level 3 pathogen; a high risk agent
- Requires high level containment in specialized labs with trained staff
- Detection is usually by nucleic acid amplification & detection – reverse transcription-polymerase chain reaction (RT-PCR)
 - Detects viral nucleic acid and NOT infectious virus
 - Can detect inactivated viruses & bits of virus nucleic acid
 - Does not prove infectious viruses are present; maybe?
- Detection of infectious 2019-nCOV in a fecal sample by cell culture has been reported in China. See:
 - http://weekly.chinacdc.cn/en/article/id/ffa97a96-db2a-4715-9dfb-ef662660e89d
 - Virus concentration in the sample was not reported.
- Therefore, concentrations of infectious 219-nCOV in clinical and environmental samples remains unknown at this time.
 - More efforts needed to determine infectious virus concentrations
2019-nCoV Presence and Survival in the Environment: Knowns and Unknowns

Presence:
• 2019-nCOV concentrations in feces, sewage or water are unknown
• Concentrations of other CoVs, such as SARS and “common cold” CoVs in some samples are known
 • Whether predictive of 2019-nCoV concentrations is unknown

Survival:
• 2019-nCoV survival in feces, sewage, water and other media is unknown
• Survival of other CoVs, such as SARS, “common cold” and animal CoVs is known for some media (sewage, water, surfaces and some foods.
 • Assumption: Survival of other CoVs may be predictive of 2019-nCoV survival. Animal CoVs and common cold COVs
 • For now, such CoV survival data is considered informative
CoV Survival on Surfaces: Temp. and RH

20 °C

Survival of TGEV (●) and MHV (■) at:
- 20% RH (a)
- 50% RH (b)
- 80% RH (c)
- 20 °C (left)
- 40 °C (right)

Both CoVs survive greater at lower temperature and lower RH

CoV Survival in Water

Reagent Water

- CoVs survived for long time periods in reagent or lake water.
- Especially at lower temperature.

Survival of Coronaviruses (TGEV and MHV) in Settled Sewage

- CoVs survived quite long time periods in settled sewage
- Especially at low temperature

Expectations for 2019-nCoV Virus Survival in Environmental Media

• 2019-nCoV may be expected to survive for extended periods of time in environmental media
• Inactivation is not immediate or very rapid
• Extensive declines of virus infectivity are expected over several days or weeks in aqueous media (sewage & water), depending on temperature, matrix/medium and other environmental conditions
• On environmental surfaces, extensive declines of virus infectivity are expected in hours, days or weeks, depending on the matrix/medium, surface and environmental conditions
Disinfection of 2019-nCov and Other CoVs on Surfaces

- Data on disinfection of 2019-nCOV is not available yet
- Disinfection data on other CoVs indicates susceptibility to a range of chemical disinfectants and UV radiation (UVC)
- Surface disinfection can be achieved with a range of chemical agents:
 - Free chlorine, ethanol (70%), quaternary ammonium compounds, glutaraldehydes, peracetic and peroxyacetic acids, chlorine dioxide and phenolic compounds
 - Available as EPA-certified formulations
 - Use at recommended concentrations or dilutions
Disinfection of 2019-nCov and Other CoVs in Fecal Wastes, Sewage and Water

- Disinfection data for 2019-nCOV is not available yet
- Disinfection data on other CoVs indicates susceptibility to a range of chemical disinfectants and UV radiation (UVC). More sensitive than enteric viruses.
- Disinfection can be achieved with a range of chemicals: Lime, quaternary ammonium compounds, peracetic and peroxyacetic acids and chlorine dioxide
 - Use at recommended concentrations or dilutions
 - Free chlorine is less effective in wastes with high organic load (e.g., fecal matter and strong sewage)
 - Must achieve breakpoint chlorination; impractical
- Conventional wastewater treatment systems are likely to reduce 2019-nCoV at least as well as other human viruses
WEF and OHSA Recommendations for Wastewater Management

- Current WEF guidance on 2019-nCOV is adequate to minimize risks
- All elements of WEF and OSHA guidance should be practiced. See: https://www.osha.gov/SLTC/covid_19/controlprevention.html#solidwaste
- Handle solid waste with 2019-nCOV as Category B Medical Waste
- Workers in contact with fecal wastes should wear recommended PPE
 - Follow recommendations for good hygiene (e.g., handwashing)
- Wastewater disinfection using free chlorine, peracetic acid or UV radiation is effective if using sufficient doses and contact times
- Free chlorine dosed to achieve a free residual of 0.2 to 0.5 mg/L readily inactivates SARS CoV, other viruses and probably 2019-nCoV
WHO Recommendations on 2019-nCOV in Wastes and Waste Management

- Recommendations for management of 2019-nCOV in fecal wastes, wastewaters and waters are being developed and will be available soon; similar to those for Ebola virus. See:
- Separate housing and sanitation facilities for cases
- Waste containment and storage for die-off over time; then safe disposal. Worker IPC; Sanitation Safety Plan
- Wastes can be transferred safely to effectively managed sanitation systems (on-site systems or central treatment systems with disinfection. Safe conveyance & worker IPC
- On-site waste disinfection for small systems is an option
 - Recommended disinfectant is lime
 - Alternatives: peracetic acid, quaternary ammonium compounds or chlorine dioxide
Research Needs for 2019-nCoV Survival and Disinfection in Environmental Media

• Develop data for survival of infectious 2019-nCOV and candidate surrogate viruses in human wastes and environmental media
• Compare survival of 2019-nCOV and surrogates as a basis to then extrapolate or estimate 2019-nCoV survival based the survival of surrogates in a range of matrices for a range of environmental conditions, including waste treatment and disinfection processes.
• Candidate disinfectants to test include, free chlorine, peracetic acids/peroxyacetic acids, quaternary ammonium compounds, chlorine dioxide, lime, gluteraldehydes and other as available
Closing words:

• Be sensible and take precautions
• Follow available guidance and recommendations
• Don’t panic!

• Thank-you!

• Questions or comments?

http://aseanews.net/2020/02/12/editorial-the-straits-times-says-panic-and-fear-more-deadly-than-virus/
Our Next Speaker

Matthew Arduino, DrPH
Senior Adviser, Environmental Hygiene and Infection Prevention
Novel Coronavirus for Water Professionals

Matthew J Arduino, MS, DrPH, FSHEA, M(ASCP)

February 25, 2020

For more information: www.cdc.gov/COVID19
Coronavirus Disease 2019 (COVID-19)
On February 11, 2020:

- The International Committee on Taxonomy of Viruses, charged with naming new viruses, named the novel coronavirus for this outbreak to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
 - The virus is related to SARS-CoV, however it is not the same virus.
- The World Health Organization announced an official name for the illness caused by SARS-COV2. The new name is coronavirus disease 2019 (COVID-19)

- CDC will be updating our website and other CDC materials to reflect the updated name
COVID-19: Emergence

- Identified in Wuhan, China in December 2019
- Caused by the virus SARS-CoV-2
- Early on, many patients were reported to have a link to a large seafood and live animal market
- Later patients did not have exposure to animal markets
 - Indicates person-to-person spread
- Travel-related exportation of cases reported
 - First US case: January 21, 2020
COVID-19: Situation Overview

- As of February 21, 2020:
 - 30 international locations (in addition to the U.S.) have reported confirmed cases of SARS-CoV-2 infection
 - 15 infections reported in the U.S. in seven states
 - Most recent U.S. cases are people who recently returned from China on U.S. State Department chartered flights
 - Two instances of person-to-person spread in the U.S. have been detected
 - Both cases occurred after close, prolonged contact with a returned traveler from Wuhan
 - First death of American citizen in China announced
Virus Characteristics

How far viruses travel

Coronaviruses like the Wuhan virus can travel only about six feet from the infected person. It’s unknown how long they live on surfaces. Some other viruses, like measles, can travel up to 100 feet and stay alive on surfaces for hours.
COVID-19: How It Spreads

- Investigations are ongoing to better understand spread
- Largely based on what is known from other coronaviruses
 - Presumed to occur primarily through close person-to-person contact (about 6 feet)
 - May occur when respiratory droplets are produced when an infected person coughs or sneezes
 - Possibly by touching a surface or object that has the virus on it and then touching the mouth, nose, or eyes
 - People are thought to be most contagious when they are symptomatic.
COVID-19: Clinical Presentation

- Limited case reports and case series describe the clinical presentation of patients with COVID-19.
- Incubation period estimated ~2-14 days
- **Sign & Symptoms**
 - Fever (83–98%)
 - Cough (46–82%)
 - Myalgia or fatigue (11–44%)
 - Shortness of breath (31%)
 - Nausea, vomiting and diarrhea (10% reported in one case report)
Infection Prevention and Control
COVID-19: Infection Prevention and Control

- The U.S. healthcare system responds to infectious disease threats every day.*
- CDC’s recommended actions and strategies to stop the spread of COVID-19 are not new. They work and most are not reliant on PPE.
 - Established infection control strategies.
- CDC’s goal—provide sound infection prevention control recommendations that protect healthcare workers AND are feasible and acceptable to implement.

*For a summary of routine outpatient infection control guidance see: https://www.cdc.gov/hai/settings/outpatient/outpatient-care-guidelines.html
COVID-19: Infection Prevention and Control

- Healthcare personnel caring for patients with confirmed or possible 2019-nCoV should adhere to CDC recommendations for infection prevention and control (IPC)
 - Assess and triage patients with acute respiratory symptoms and risk factors to minimize chances of exposure
 - Place a facemask on the patient
 - Isolate them in an Airborne Infection Isolation Room (AIIR), if available
 - Use Standard Precautions, Contact Precautions, and Airborne Precautions and eye protection when caring for patients with confirmed or possible COVID-19
 - Perform hand hygiene
COVID-19: Infection Prevention and Control

Airborne Infection Isolation Rooms (AIIR)

- Evaluation of PUIs and confirmed COVID-19 should occur in either
 - AIIR
 - or
 - Examination room with the door closed
 - Room should ideally not have exhaust that is recirculated within the building without HEPA filtration.

- PUIs or patients with confirmed disease who require hospitalization should preferably be cared for in an AIIR.
 - If AIIR is not immediately available, consideration transferring patient to a facility with AIIR availability.
COVID-19: Infection Prevention and Control

- **Environmental Cleaning and Disinfection**
 - Routine cleaning and disinfection procedures are appropriate for COVID-19 in healthcare settings, including those patient-care areas in which aerosol-generating procedures are performed.
 - Products with [EPA-approved](https://www.epa.gov) emerging viral pathogens claims are recommended for use against SARS-CoV-2 (the virus that causes COVID-19).
COVID-19: Infection Prevention and Control

- Coronaviruses are susceptible to the same disinfection conditions in community and healthcare settings as other viruses
- Waste generated in the care of PUIs or patients with confirmed COVID-19
 - Same considerations for waste and wastewater disinfection
 - Current disinfection conditions in wastewater treatment facilities are expected to be sufficient.
 - Including conditions for practices such as:
 - oxidation with hypochlorite (i.e., chlorine bleach)
 - peracetic acid
 - inactivation using UV irradiation.
COVID-19: Infection Prevention and Control

- Medical waste (trash) coming from healthcare facilities treating COVID-2019 patients is no different than waste coming from facilities without COVID-19 patients.
- CDC’s guidance states that management of laundry, food service utensils, and medical waste should be performed in accordance with routine procedures.
- There is no evidence to suggest that facility waste needs any additional disinfection.
COVID-19: Infection Prevention and Control

- Wastewater and sewage workers should:
 - Use standard practices
 - Basic hygiene precautions
 - Wear PPE as prescribed for current work tasks
- There is no evidence to suggest that employees of wastewater plants need any additional protections in relation to COVID-19.
COVID-19: Infection Prevention and Control

- There are steps HCP can take to prepare for arrival, elevation and transportation of patients.

 - Healthcare Personnel Preparedness Checklist for COVID-19

COVID-19: Infection Prevention and Control

- CDC’s current guidelines are designed to prevent the spread of COVID-19 within healthcare facilities to HCP and other patients who may be exposed

Tools and Resources
COVID-19: Tools and Resources

- **Current Interim Guidance**
 - Evaluating and Reporting Persons Under Investigation (PUI)
 - Healthcare Infection Control Guidance
 - Clinical Care Guidance
 - Home Care Guidance
 - Guidance for EMS
 - Healthcare Personnel with Potential Exposure Guidance

- **Persons Under Investigation (PUIs)**
 - Evaluating and Reporting PUI Guidance
 - Flowchart to Identify and Assess COVID-19
 - Reporting a PUI for COVID-19

- **Clinical Care**
 - Clinical Care Guidance
 - Disposition of Hospitalized Patients with COVID-2019
COVID-19: Tools and Resources (cont’d.)

- **Infection Control**
 - Infection Control
 - Frequently Asked Questions: Healthcare Infection Prevention and Control

- **Supply of Personal Protective Equipment (PPE)**
 - Healthcare Supply of Personal Protective Equipment
 - Strategies for Optimizing Supply of N95 Respirators
 - FAQ about Respirators

- **Home Care**
 - Implementing Home Care of People Not Requiring Hospitalization
 - Preventing COVID-19 from Spreading in Homes and Communities
 - Disposition of Non-Hospitalized Patients with COVID-19
For more information, contact CDC
1-800-CDC-INFO (232-4636)

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.
Our Next Speaker

Christopher K. Brown, PhD
Acting Director, Office of Science and Technology Assessment

OSHA® Occupational Safety and Health Administration
Protecting Workers from the COVID-19 Novel Coronavirus

Christopher K. Brown, PhD, MPH, CPH
Acting Director, Office of Science and Technology Assessment
Directorate of Technical Support and Emergency Management
Occupational Safety and Health Administration
OSHA is closely coordinating with CDC, including NIOSH, and other agencies to monitor the ongoing outbreak.

Currently, most U.S. workers are at low risk of exposure, similar to other members of the public.

OSHA does not recommend any special precautions, beyond general hygiene practices, for most workers.
Workers in some sectors may have increased risk of occupational exposure to COVID-19, including in:

- Healthcare, including in fixed facilities and EMS
- Mortuary services and other deathcare
- Laboratories
- Airline operations
- Border protection and passenger screening
- Solid waste and wastewater management
- International business travel

www.osha.gov/covid-19
Existing OSHA standards protect workers from exposure

- Follow existing OSHA standards to help protect workers from exposure to and infection with COVID-19.

- Employers should also remember that OSHA can use the General Duty Clause, Section 5(a)(1), of the Occupational Safety and Health Act to ensure that workers are protected from recognized safety and health hazards that may cause serious harm.

Relevant OSHA requirements

- Personal Protective Equipment (29 CFR 1910 subpart I), including:
 - PPE General Requirements (1910.132)
 - Eye and Face Protection (1910.133)
 - Respiratory Protection (1910.134)
- Bloodborne Pathogens (29 CFR 1910.1030)
- Recordkeeping (29 CFR part 1904)
OSHA Enforcement

OSHA:

- Typically responds to emergencies, including disease outbreaks, in a technical assistance posture.
- Provides compliance assistance to employers to help ensure workers are protected.
- Provides technical assistance and support to other federal agencies, as well as state/local partners.

OSHA enforcement authority

- During emergency response operations, even when OSHA is operating in a technical assistance and support mode, OSHA standards remain in effect and OSHA retains its ability to enforce the OSHA standards under the OSH Act.
- Enforcement of OSHA standards follows the jurisdiction in place before the emergency, such as in states operating OSHA-approved occupational safety and health programs called State Plans.

www.osha.gov/covid-19
OSHA guidance

- OSHA has developed a website with information for workers and employers on how to stay healthy during the outbreak.
- Website includes information on implementing the hierarchy of controls when workers have specific exposure risks.

www.osha.gov/covid-19
OSHA guidance helps employers comply with OSHA standards, and generally aligns with CDC recommendations for infection prevention.

Guidance is based on anticipated hazards and risks, and incorporates standard precautions, contact and airborne precautions, and use of face/eye protection.

Guidance should be adapted based on employer’s hazard assessment and workers’ tasks.

www.osha.gov/covid-19
For all workers, regardless of specific exposure risks:

- Practice good and frequent hand hygiene.
- Follow good cough/sneeze etiquette.
- Avoid touching the eyes, nose, or mouth with unwashed hands.
- Avoid close contact with people who are sick.

[Website link: www.osha.gov/covid-19]
Train all workers about their risk of occupational exposure to COVID-19, as well as on what to do if they have traveled to high-risk areas or been exposed to possible cases.

For workers at particular risk of exposure (e.g., in healthcare, others), discuss:

- Sources of exposure to the virus and hazards associated with that exposure.
- Appropriate ways to prevent or reduce the likelihood of exposure, including use of engineering and administrative controls, safe work practices, and PPE.

Some OSHA standards (e.g., BBP, PPE) require worker training.

www.osha.gov/covid-19
For U.S. workers and employers of workers with potential occupational exposures to COVID-19:

- Identify and isolate suspected cases.
- Implement other precautions appropriate for the worksite and job tasks, and according to the hierarchy of controls.

[OSHA guidance link](www.osha.gov/covid-19)
What should standard, contact, and airborne precautions consist of in workplaces where workers may be exposed to COVID-19? OSHA guidance breaks this down by worker type.

- Engineering controls, such as isolation rooms and other physical barriers, can limit most workers’ exposures.

- Administrative controls and safe work practices include measures such as limiting access to patient care areas, effective sharps management, and worker training.

- PPE may include gloves, gowns, goggles or face shields, and N95 or better respirators.
Christopher K. Brown, PhD, MPH, CPH
Acting Director, Office of Science and Technology Assessment
Directorate of Technical Support and Emergency Management
Occupational Safety and Health Administration (OSHA)
U.S. Department of Labor

Phone: 202-693-2368

Email: brown.christopher.k@dol.gov
Our Next Speaker

Christine Tomlinson, PhD
Senior Biologist, Consequence Management Advisory Division,
Office of Emergency Management
• Interagency Coordination Response

• Emergency Response
 ▪ What On-Scene-Coordinators do
 ▪ How EPA develops information for On-Scene Coordinators
 ▪ How EPA ERP compares with that of CDC and OSHA
Our Next Speaker

Rasha Maal-Bared, PhD
Senior Microbiologist
Behind the webpage

• The authors
 ➢ WEF Disinfection and Public Health Committee
 ➢ Waterborne Infectious Disease Outbreak Control (WIDOC) Working Group

• The process
 ➢ Internal
 ➢ External

• The webpage: https://wef.org/coronavirus
The Latest on the Coronavirus and How to Protect the Workforce

VISIT WEF'S RESOURCE PAGES
Current Priority: Coronavirus

What Is the Novel Coronavirus?
The 2019 Novel Coronavirus is the cause of a respiratory illness called Coronavirus disease (COVID-19). It was identified as the cause of an outbreak first detected in Wuhan, China on Dec. 31, 2019. The disease has begun to spread worldwide. This means it is important that water sector professionals keep informed on the attributions of this virus and any measures needed to protect both workers and public health, in general.

This video below from the World Health Organization provides the basics on the disease as know at the video release date of Jan. 24, 2020.

Where Do I Start?
To help put the outbreak of COVID-19 into perspective for the water sector, the WEF Disinfection and Public Health Committee (DPHC) Waterborne Infectious Disease Outbreak Control (WIDOC) Working Group has created a series of articles that explain the current situation. These articles also contain many links to developing research on this epidemic.

THE WATER PROFESSIONAL'S GUIDE TO THE 2019 NOVEL CORONAVIRUS

HOW CORONAVIRUS COMPARES TO OTHER VIRUSES
Where Do I Start?
To help put the outbreak of COVID-19 into perspective for the water sector, the WEF Disinfection and Public Health Committee (D/PHC) Waterborne Infectious Disease Outbreak Control (WDOC) Working Group has created a series of articles that explain the current situation. These articles also contain links to developing research on this epidemic.

THE WATER PROFESSIONAL’S GUIDE TO THE 2019 NOVEL CORONAVIRUS

- How Coronavirus Compares to SARS and MERS
- Signs and Symptoms of Coronavirus Infection

WEBCAST: UPDATES ON NOVEL CORONAVIRUS (COVID-19) FOR WATER PROFESSIONALS

Note: The information posted here is a summary of current knowledge about this emerging viral pathogen. The state of knowledge will evolve as additional investigation and research is conducted, so continuous review of reputable sources and websites is advised.

How Can I Stay Informed?
This situation is developing and changing quickly. The links below point to reputable and reliable sources of information that are updated frequently with technical guidance, public health information, and the latest research.

WORLD HEALTH ORGANIZATION (WHO)

- Centers for Disease Control and Prevention
- Occupational Safety and Health Administration

More About Coronavirus:
- How to Avoid Coronavirus
- Will WRRPs Stop Coronavirus?
- Do Wastewater Workers Need to Take Special Precautions?
- Where Can I Find More Info on Personal Protective Equipment?
The 2019 Novel Coronavirus was identified as the cause of an outbreak of respiratory illness, referred to as COVID-19. It was first detected in Wuhan, China on Dec. 12, 2019. Because this disease already has begun to spread worldwide, it is important that water sector professionals keep informed on the attributions of this virus and any measures needed to protect both workers and public health, in general.

Disclaimer: The information posted here is a summary of current knowledge about this emerging viral pathogen. The state of knowledge will evolve as additional investigation and research is conducted, so continuous review of reputable sources and websites is advised.

Extent of the 2019 Novel Coronavirus Outbreak

The World Health Organization (WHO) has declared the COVID-19 outbreak a "public health emergency of international concern." The virus has spread to more than 200 countries and territories, with millions of cases reported worldwide. The WHO has also warned that the virus could spread even further, and that it is not yet clear how transmissible it is or how severe the illness caused by the virus will be.
More Resources on Coronavirus

Resources on Coronavirus
- Current Priority: Coronavirus (COVID-19)
- The Water Professional’s Guide to COVID-19
- How Coronavirus Compares to SARS and MERS
- Signs and Symptoms of Coronavirus Infection

How Can I Stay Informed?
The organizations below are reputable and reliable sources that are frequently updated.

- WORLD HEALTH ORGANIZATION (WHO)
- CENTERS FOR DISEASE CONTROL AND PREVENTION
- OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION

In an effort to increase transparency and communication, major publishers have created Coronavirus information centers, where relevant and current research is freely available. This includes Springer Nature, Elsevier and Wiley. Several major journals have done the same, including: The Lancet, New England Journal of Medicine and The British Medical Journal.
How Coronavirus Compares to SARS and MERS

Within the coronavirus family, COVID-19 appears to be more easily transmitted but less severe than SARS or MERS.

Like SARS and MERS, COVID-19 person to person transmission is not efficient, as this coronavirus infects the lower lungs making it less transmissible than the flu, which infects the upper airways and nose."

While COVID-19 lab-confirmed case numbers soared from about 50 in China to more than 17,000 in at least 23 countries in 3 weeks, the 9-month SARS outbreak only resulted in 8,098 confirmed cases.

Similarly, MERS had been circulating since 2012 with only about 2,500 known cases. However, the higher number of COVID-19 confirmed cases could be due to improved virus detection technologies over recent years.

Although most human Coronavirus infections are typically mild, mortality rates were 10% for SARS and 37% for MERS. In comparison, COVID-19 has a much lower estimated mortality rate of 2%, dropping from a high of 4.1% in Wuhan to approximately 0.17% elsewhere in mainland China. The factors that cause some COVID-19 infections to be more severe than others still need to be determined.

How does Coronavirus compare to Ebola?

The Novel Coronavirus is different from the Ebola virus. Ebola virus is a bloodborne, highly infectious, enveloped filovirus. In contrast, SARS and MERS are from the same family of coronaviruses and have similar physical and
Table 1. Comparing the novel Coronavirus, SARS and Ebola.

<table>
<thead>
<tr>
<th>Factor</th>
<th>2019 Novel Coronavirus</th>
<th>SARS</th>
<th>Ebola virus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etiology</td>
<td>RNA virus from Coronaviridae family</td>
<td>RNA virus from Coronaviridae family</td>
<td>RNA virus from Filoviridae family</td>
</tr>
<tr>
<td>Source</td>
<td>Zoonotic</td>
<td>Zoonotic</td>
<td>Zoonotic</td>
</tr>
<tr>
<td>Transmission</td>
<td>Direct contact with infected person respiratory droplets</td>
<td>Direct contact with infected person respiratory droplets</td>
<td>Direct contact with infected person blood or bodily fluids</td>
</tr>
<tr>
<td>Incubation period</td>
<td>2-14 days</td>
<td>2-14 days</td>
<td>2-21 days</td>
</tr>
<tr>
<td>Symptoms</td>
<td>Fever, cough, shortness of breath or difficulty breathing, diarrhea</td>
<td>Fever, cough, headache, malaise, shortness of breath, diarrhea</td>
<td>Fever, headache, vomiting, stomach and muscle pain, bleeding, diarrhea</td>
</tr>
<tr>
<td>Asymptomatic individuals infective</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Secondary transmission (fomites)</td>
<td>Unknown</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Airborne</td>
<td>Unknown</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Detected in feces</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Persistence in wastewater</td>
<td>Likely</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Effective skin disinfectants</td>
<td>Handwashing with soap and water (min. 20 sec); alcohol-based sanitizer (min. 60%)</td>
<td>Handwashing with soap and water; alcohol based-sanitizer as per manufacturer’s instructions</td>
<td>Handwashing with soap and water (min. 40 sec); 0.05% hypochlorite solution; alcohol-based sanitizer (min. 60%, min. 20 sec)</td>
</tr>
<tr>
<td>Effective surface</td>
<td>Common detergents</td>
<td>Common detergents</td>
<td>0.5% hypochlorite</td>
</tr>
</tbody>
</table>
A study published by the Lancet reported that as of Jan. 2, 2020 the most common symptoms at onset of illness were fever [96%], cough [76%], and myalgia, or fatigue [44%]. Less common symptoms were sputum production [28%], headache [8%], haemoptysis (coughing up blood) [5%], and diarrhea [3%].

One distinguishing feature of this Coronavirus infection, named COVID-19, is dyspnoea or shortness of breath, which has been reported in more than half of patients [55%]. It can take anywhere from 2 to 14 days for symptoms to develop, according to the U.S. Centers for Disease Control and Prevention.

Treatment or vaccine for the Coronavirus?
There currently are neither vaccines nor direct treatments against the novel Coronavirus. Upon admission to hospitals patients are provided with supportive therapies to help with symptom relief until the immune system can fight the virus.

How can I stay healthy?

While the CDC reports that the immediate risk of this new virus to the American public is believed to be low at this time, they recommend that everyone do their part to help us respond to this emerging public health threat. Because people of all ages have been infected by COVID-19, the WHO advises everyone to take proper infection control precautions. The best way to prevent infection is to avoid being exposed to this virus. However, as a reminder, CDC always recommends everyday preventive actions to help prevent the spread of respiratory viruses, including:

- Stay informed!
- Wash your hands often with soap and water for at least 20 seconds.
- If soap and water are not available, use an alcohol-based hand sanitizer with at least 60% alcohol content.
- Avoid touching your eyes, nose, and mouth with unwashed hands.
- Avoid close contact with people who are sick.
- Stay home when you are sick.
- Cover your cough or sneeze ideally with a disposable tissue.
- Clean and disinfect frequently touched objects and surfaces.
- Do not place your personal belongings on the floor or on surfaces that may be contaminated.
This article was prepared by the WEF Disinfection and Public Health Committee’s (DPHC) Waterborne Infectious Disease Outbreak Control (WIDOC) Working Group.

- Resha Maal-Bared is the Senior Microbiologist at EPCCOR Water Services Inc. (Edmonton, Canada) and the current chair of the Waterborne Infection Disease Outbreak Control Working Group.
- Robert Bastian is a senior environmental scientist at the U.S. Environmental Protection Agency.
- Kyle Bibby is an Associate Professor and the Warner Cole Collegiate Chair in the Department of Civil and Environmental Engineering and Earth Sciences at the University of Notre Dame (Notre Dame, Ind.).
- Karl Briscoe is the Associate Dean for Academic Affairs and an Associate Professor of Environmental and Occupational Health Sciences at the Louisiana State University Health Sciences Center (New Orleans, La.) and Vice Chair of the WEF Disinfection and Public Health Committee.
- Lee Gary is an Adjunct Professor at Tulane University, an instructor with the Basic Academy at the FEMA/Emergency Management Institute (Emmitsburg, Md.) and the owner and CEO of Strategic Management Services (New Orleans).
- Chuck Gerba is a professor of epidemiology and biostatistics in the Dept of Environmental Science at the University of Arizona and a supporting member of the WIDOC working group.
- Lola Olubode is a Program Director at the Water Resources Foundation and an expert in risk management during outbreaks (Washington, D.C.).
- Naoko Munakata is a Supervising Engineer at the Los Angeles County Sanitation Districts.
- Robert S. Reimers is a Professor Emeritus at Tulane University’s School of Public Health and Tropical Medicine, the Director of Asapctics Inc. (New Orleans, La.).
- Albert Rubin is a professor emeritus at North Carolina State University in the Dept of Biological and Agricultural Engineering.
- Scott Schnell is the Wastewater Practice Leader with AE2S (Saint Joseph, Minn.) and the Chair of the WEF Disinfection and Public Health Committee.
- Samentra Sherchan is an Assistant Professor at the Tulane School of Public Health and Tropical Medicine (New Orleans, La.).
- Jay Swift is a Principal Engineer with Grey and Osborne (Seattle, Wash.).

The authors would like to thank Matthew Ariondu (CDC, DDIO), Christopher K. Brown (OSHA), Matthew Magnusson (U.S. EPA), Jonathan Yoder (CDC, DDIO), and Jill Suggart (CDC, NIOSH) for their comments and feedback. (Note: The conclusions, findings, and opinions expressed by the authors contributing to this piece do not reflect the official views of the organizations.)
Questions for Our Speakers

• Scott Schaefer, WEF DPHC Chair
• Mark Sobsey, UNC Chapel Hill
• Matt Arduino, CDC
• Christopher Brown, OSHA
• Christine Tomlinson, EPA
• Rasha Maal-Bared, WEF DPHC, WIDOC