

Improving Wards Island WRRF Energy Recovery Through Coupled Thermal Hydrolysis and Cogeneration Systems

David Cham, Janet Acquah, David Ip, & Julie Yaish

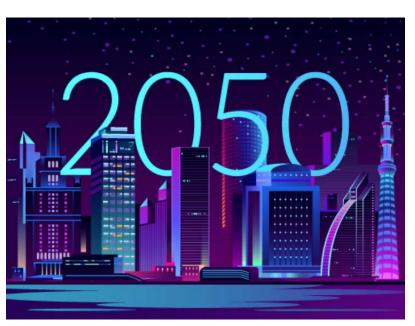
Agenda

Background

- Goals and Objective
 Net-Zero Carbon goal of 2050
- Wards Island WRRF
- General THP

Diagram
Graph of energy generation (gas flared, sent to energy, purchased fuel)
ADG status

Diagram of ModificationsEnergy Demands


Comparison


Energy BalanceCost Estimates

Background

Design Problem

- Net-zero carbon emission
- WWRF at the Forefront of advancements
- Design

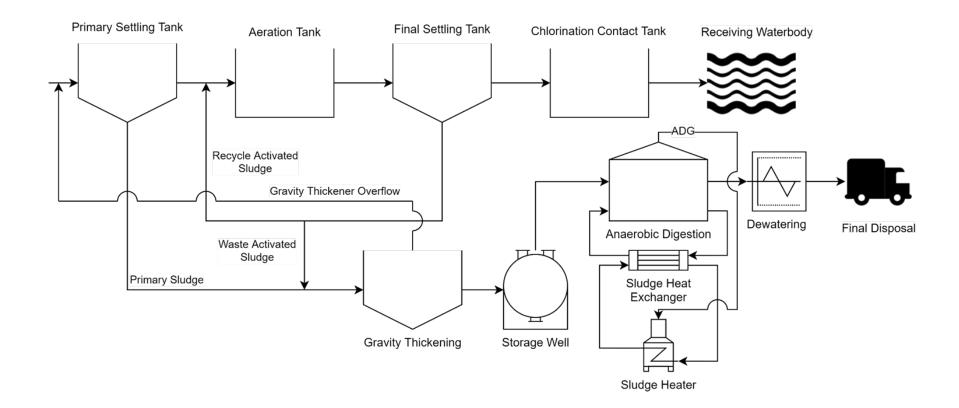
Wards Island

- Located on Randall's and Wards Island
- Serves over one million people
- 275 MGD flow capacity

Design Scope - Thermal Hydrolysis/Cogeneration

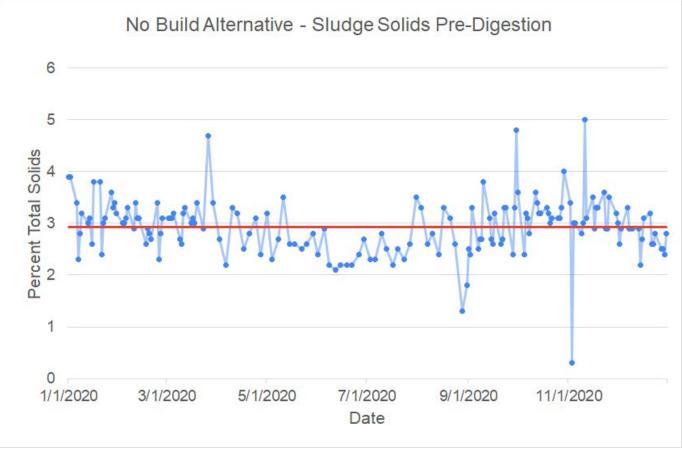
Increase solids Distraction

Increase Anaerobic Digester gas production

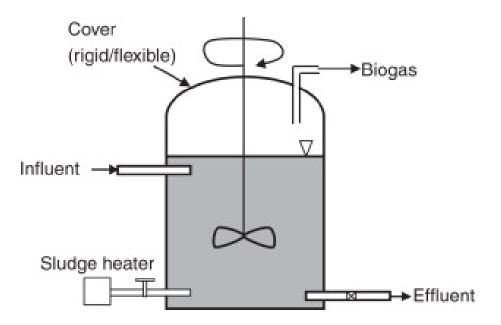

Increase Anaerobic Digester capacity

Net –Zero Energy Demand

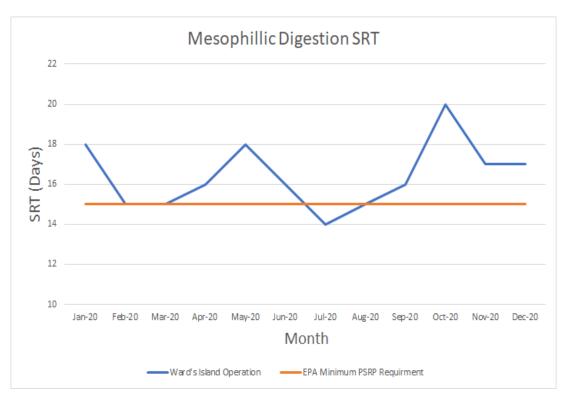
Design Solution


Alternative #1 - No Build

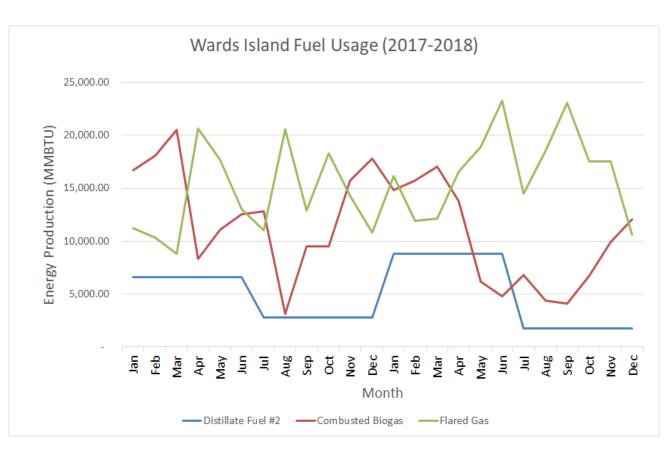
Existing Process - No-Build


Thickening

- Current gravity thickeners result in sludge ranging from 0.3 to 5% solids
- Average thickness is 2.94% with standard deviation of 0.55%


Anaerobic Digestion

- Sludge is placed in an oxygen deprived, cylindrical chamber
- Temperatures are raised to encourage bacteria activity
- Specialized bacteria and archaea break down biodegradable material in the absence of oxygen
- Biogas and digested sludge are the effluents



Mesophilic Anaerobic Digestion at Ward's Island

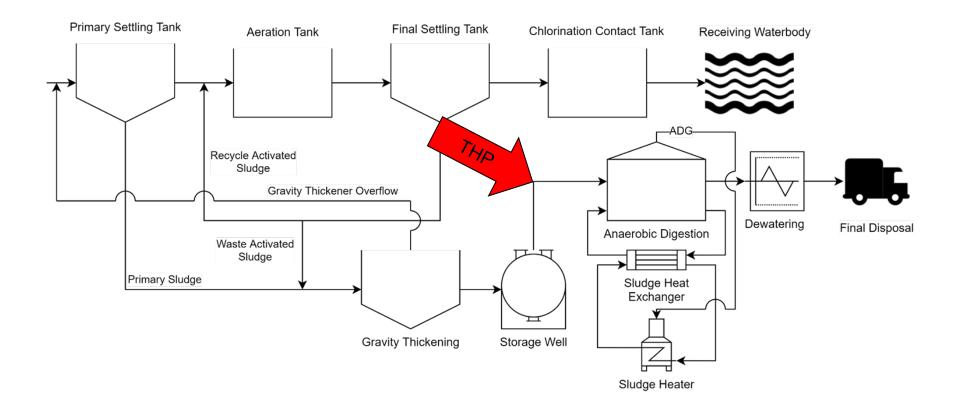
- Mesophilic digestion reduces sludge stream
 - Improves dewaterability
 - Minimizes shipping costs
- EPA requires a 15 day SRT to significantly reduce the pathogen content of sludge

- Average monthly biogas flared: 15,434 MMBTU
- Average monthly Distillate Fuel Purchased: 4,969 MMBTU
- Average monthly Biogas beneficially used: 11,345 MMBTU
- 41.7% of Biogas is beneficially used monthly
- Monthly Average Energy Potential: 108,024 MMBTU

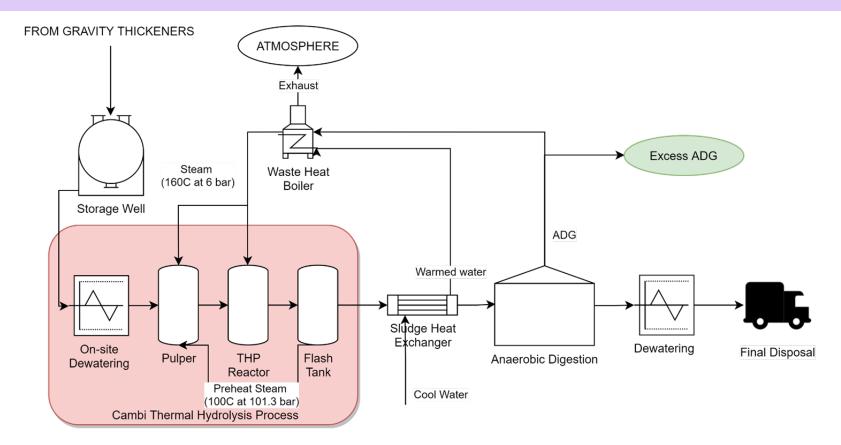
Biogas Use

Current Usage	Potential Usage
 Sent to Boilers to be burned for heating Facilities There is a surplus of Biogas that can be used 	 Boiler Usage with New Storage Cogeneration Direct Fueling to Vehicles Direct Injection into Fuel Pipeline Modifying Anaerobic Digestion (Biorefinery) Thermal Hydrolysis Pretreatment with Cogeneration Thermal Hydrolysis Pretreatment without Cogeneration

Alternative 2 - Thermal Hydrolysis

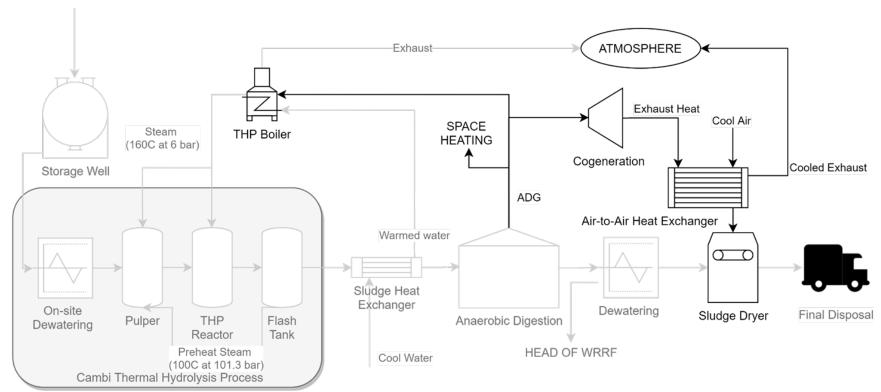

Thermal Hydrolysis (THP)

• THP process - heating sludge to high temperatures at high pressures

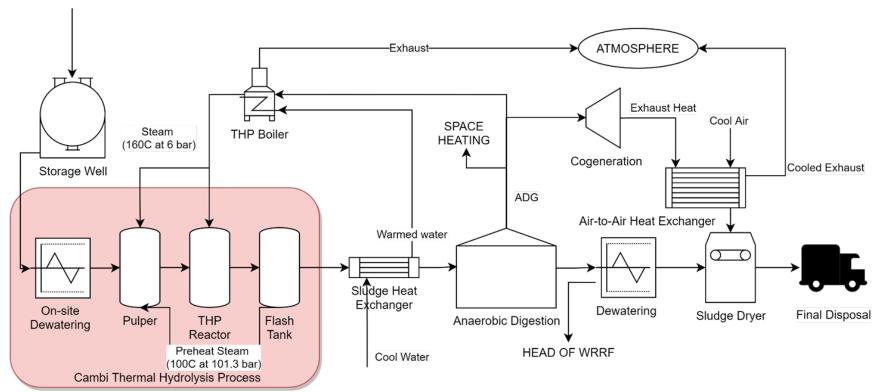

- Consists of three phases:
 - Sludge Preheat
 - Thermal Hydrolysis
 - Steam Explosion and Cooling

• THP seeks to improve quality of digested sludge and increase ADG production

No-Build Alternative



No-Build Alternative with THP


ADG Allocation in THP

FROM GRAVITY THICKENERS

ADG Allocation in THP

FROM GRAVITY THICKENERS

Energy Balance Analysis

No-Build Alternative - Energy Balance

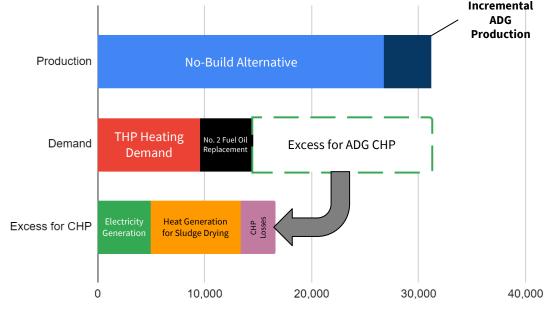
- 1. Electricity 8 million kWh/month (27,300 MMBtu/month)
 - a. Powering office space
 - b. Operating machinery
 - i. Aeration blowers
 - ii. Pump motors

2. No. 2 Fuel Oil - 5,000 MMBtu/month

- a. Heating space
- b. Water heating
- 3. ADG Recovery 27,000 MMBtu/month
 - a. Digester heating
 - b. Flared

Cogeneration - **Reduce electricity demands** while generating reusable heat.

Replace heating demands with excess ADG.


Increased beneficial of ADG and waste heat from processes.

THP System - Energy Balance

Energy Expenditures and Incomes

Changes to No-Build:

- Replaces digester heating with THP waste heat
- 2. Replaces No. 2 Fuel Oil heating demand
- 3. Generates 18% of Wards Island WRRF's electricity demand
- 4. Introduces sludge drying with CHP waste heat

Energy (MMBtu/month)

Cost Analysis

Current Operational Costs

• Digester maintenance and employee costs are assumed to remain the same

• Consists of the cost of No.2 Fuel Oil and sludge disposal

- Operational Costs: **\$14.5 million dollars/year**
 - Assumptions:
 - Sludge Disposal \$130/wet ton of sludge

Thermal Hydrolysis & Cogeneration

- Approximately the cost of thermal hydrolysis can be difficult due to lack of implementation across the world
- Costs comprise of completing a thermal hydrolysis and cogeneration facility
- Upfront Costs -> \$104.5 million dollars
 - Cost of THP Plant (GBP) = $6*10^{6*}(Q^{0.5509})$ (Barber, 2016)
 - Assumptions
 - Electrical Capacity 2000 kW
 - Capital Cost Rate 2240 \$/kW
- Operational Cost Savings -> **\$7.7 million dollars/year**
 - Assumptions
 - Sludge reduction 30%

	No-Build	THP + Cogeneration
Upfront Costs	\$0	\$104.5 million
Operational Costs	\$14.5 million/year	\$7.7 million/year

About a 13.6 year return on investment (ROI)

Conclusions

Conclusions

• Thermal hydrolysis improves the quality and decreases the quantity of digested sludge

 Thermal hydrolysis at Wards Island WRRF can improve ADG production from 30% -50%

• Cogeneration can reduce electricity demands of the WRRF

References

CAMBI. (n.d.). *How does thermal hydrolysis work?* Thermal Hydrolysis. https://www.cambi.com/what-we-do/thermal-hydrolysis/how-does-thermal-hydrolysis-work/

- Barber, B. (2016, October 19). Cambi Thermal Hydrolysis Theory, market and the future. In *Cambi, Recycling Energy*. Retrieved July 30, 2021, from https://www.wef.org/globalassets/assets-wef/3--resources/online-education/eshowcases/handouts/presentation-handouts---cambi-eshowcase-2.pdf
- DEP. (n.d.). *Wastewater Treatment Process*. New York City Department of Environmental Protection. https://www1.nyc.gov/site/dep/water/wastewater-treatment-process.page
- Legal Information Institute. (n.d.). 40 CFR § 503.15 Operational standards pathogens and vector attraction reduction. Cornell Law School. Retrieved June 10, 2021, from https://www.law.cornell.edu/cfr/text/40/503.15
- Metcalf and Eddy, AECOM. (2014). *Wastewater Engineering, Treatment and Resource Recovery* (Fifth ed.). McGraw Hill Education.
- Water Technology. (2011, May 01). *Wards Island Water Pollution Control Plant.* Retrieved June 10, 2021, from https://www.water-technology.net/projects/wards-island

Acknowledgments

Krish Ramalingam

Michael Bobker

Alex Rosenthal

Thank You!