

Erosion and Stormwater Analysis of Lassing Park

Prepared By: AQUA ENGINEERING

University of South Florida Environmental Category

Anna Zimmerman, Jordin Kahler, Mariko Peltz, Alex Orellana, Andres Lora Santos

Team Members & Roles

Anna Zimmerman - Project Manager Andres Lora Santos- Lead Water Resources Engineer

Jordin Kahler - Lead Civil Design Engineer

Alex Orellana (Right) - Heavy Civil Engineer Mariko Peltz (Left) - Lead Technical Engineer

Outline

Problem

Background

Objectives

Tasks

Recommendations

Evaluation of Recommendations

Permitting

Location: Saint Petersburg, Florida

Problem

Current Problems at Lassing Park:

- Erosion

- Since 1994, the shoreline has receded about 20,000 sq. feet
- Increased erosion at north end
- Rising sea levels and Florida rainy season

- Stormwater

- Structures in unacceptable conditions
- Piping in need of significant repair
- Poor water quality
- Florida rainy season

Figure I: Progression of Erosion at Lassing Park (1994 Left, 2020 Right)

Figure 2: Progression of Erosion at Lassing Park at the North End (1994 Left, 2020 Right)

Background

- 14.2 acre site
- 2800 ft of coastal frontage
- 2011 Tampa Bay Watch
 proposal
- 2015 AECOM Master Plan
- Community Survey

Figure 3: Satellite Image of Lassing Park

City's Mission Statement:

"To preserve, protect, maintain and enhance the City's parklands and recreational facilities and engage people in leisure activities that contribute to their quality of life."

Project Goals:

- Address current stormwater design failures to improve water quality
- Combat erosion
- Protect the coast
- Create habitat and preserve natural aquatic ecosystems
- Without compromising the needs and lifestyles of the community

Tasks Completed

- Kickoff Meeting
- Site Visit (January 18, 2021)
- Data Request
- Community Survey
- Weekly Internal Meetings
- Literature Review
- Erosion Modeling
- Basin Delineation
- Stormwater Analysis
- Retrieval of Water Quality Records

- Deliberation of Potential Alternatives
- AutoCAD Modeling
- Cost Analysis
- Permitting
- Incorporation of Client Comments
- Verification of Parameters
- Evaluation of Alternatives
- Schedule of Implementation
- Proposal of Finalized Alternative Solutions

Community Survey Results

of Surveys Distributed: 300

of Responses: 72

Question	Most Popular Answer		
What do you use the park for?	Exercise, Relaxation, Water Sports		
What needs updates?	Piping, Water Quality, Ditch on South End		
Would you be unhappy with the existing stormwater structures at Lassing Park being updated or replaced?	No (82%) Yes (18%)		
If yes, please explain why.	No park development preferred		
If there were to be any updates to the park or beach, what kind of updates would you be against?	No structures Keep the park natural		
Which of the following natural solutions would you be most satisfied with to address water quality? Check as many boxes that you agree with.	Rain Garden Living Shoreline Vegetated Swale		
Would you be opposed to the addition of riprap and mangroves at the north end to help with the erosion?	No, but did not like the riprap addition		

0. "Do Nothing"

I. Old Pier Removal

2. Geotextiles & Living Shoreline

3. Stormwater Improvements

4. Bioretention Bed

5. Vegetated Swale

Alternatives

Recommendation 0 - "Do Nothing"

- No substantial changes based on Community Survey
- Baseline option

Figure 4: Current Beach Conditions at Lassing Park.

Recommendation 1 - Old Pier Removal

- Sediment reservoir on the north side of the pier

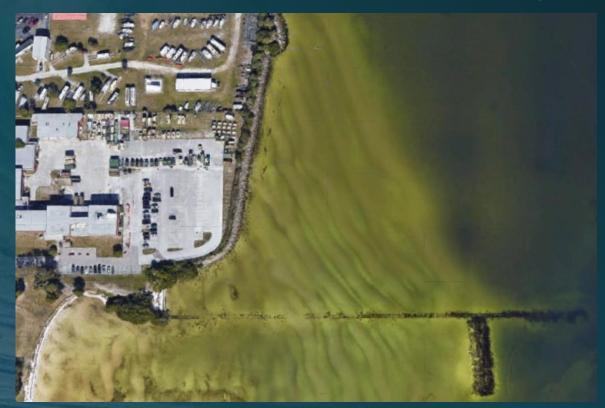


Figure 5: Satelite (left) and Field (right) Images of Existing Pier

Recommendation 1 - Old Pier Removal

- Meeting with Dr. Hapke
 - Some potential to limit longshore drift 0
 - Removal would allow new sediment to enter 0 north side of park
 - Would not need to remove subsurface 0 materials
 - Capital Cost: \$92,000
 - O&M: None -

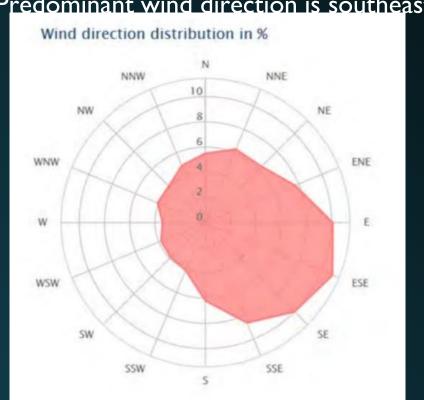


Figure 6: Wind Direction for Lassing Park Zone Credit: Dr. Cheryl Hapke

Predominant wind direction is southeast

Recommendation 2 - Geotextiles & Living Shoreline

- Geotextile reinforcement mat:
 - Biodegradable coir material
 - 1835 SY, 1/2 inch thick

Figure 7: Geotextile Reinforcement Mat

- Geotextile sandbags will form a wall:
 - 2 ft high, 200 feet long

Figure 8: Geotextile Sandbags

Recommendation 2 - Geotextiles & Living Shoreline

Red Mangroves:

- Planted along the north end
- Need time to establish
- Prop roots stabilize sand
- Currently successful at the site
- Capital Cost: \$70,000
- O&M: \$500/year

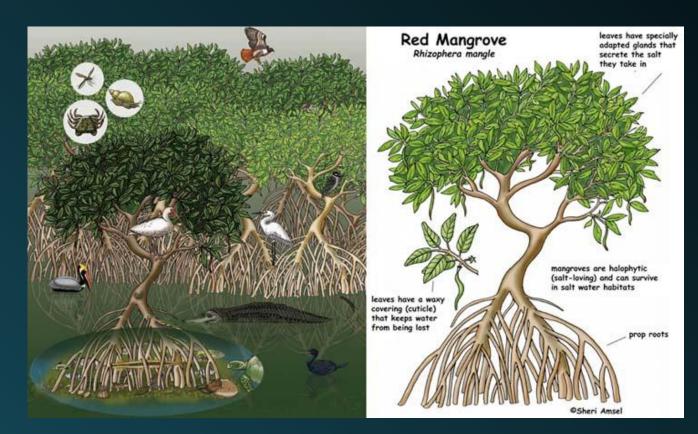
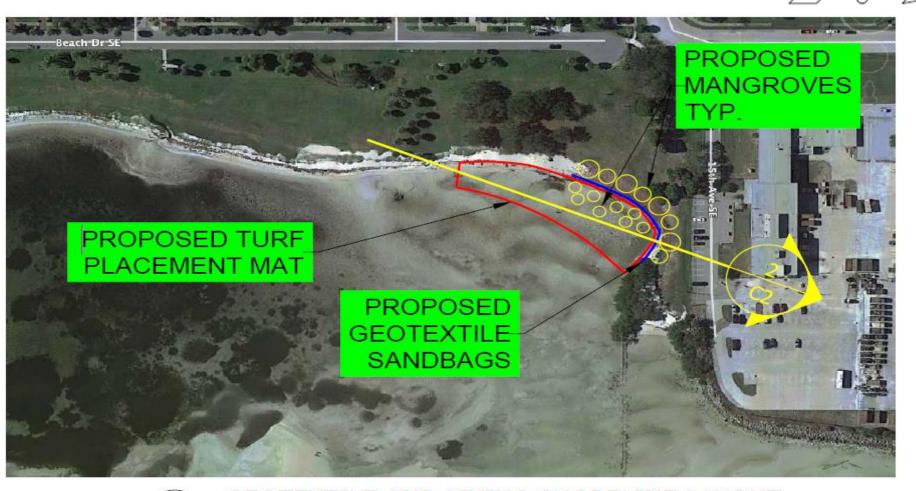



Figure 9: Mangrove Root System Diagram

GEOTEXTILE AND LIVING SHORELINE LAYOUT

Scale: 1:150

7

AQUA ENGINEERING 4202 E FOWLER AVE TAMPA, FL 33620 CITY OF ST.PETERSBURG LASSING PARK 2042 BEACH DR. SE ST.PETERSBURG, FL 33705 DATE: 04/09/2021 DRAWN BY: JK SCALE AS SHOWN ST.PETERSBURG, FL 33705

1

Recommendation 3 - Stormwater Improvements: Flow Parameters

SCS Method:

- Curve numbers for residential space are hydrologic soil group A.
- Significant difference between the results of both methods.
- Less limitations in application.

$$Q = \frac{(P-I_a)^2}{(P-I_a) + S}$$

Figure 10: Hydrologic Soil Group Boundary

Recommendation 3 - Stormwater Improvements

Table I: SCS Peak Flow Results							
	Flows for 25-Year Design Storm						
			Hydraulic				
Basin	Area	SCS Curve #	Length (ft)	Slope	Q peak (cfs)		
Н	8.5	67.5	448.21	0.0141	12		
G	3.25	54	387.55	0.0136	2.7		
F	3.5	54	448.21	0.00849	2.2		
E	2.5	54	387.55	0.006	1.5		
D	1	54	252.75	0.00869	0.9		
С	3.5	54	421.25	0.0028	1.4		
В	4	54	498.76	0.00535	1.7		
А	3.25	54	485.28	0.00454	1.5		

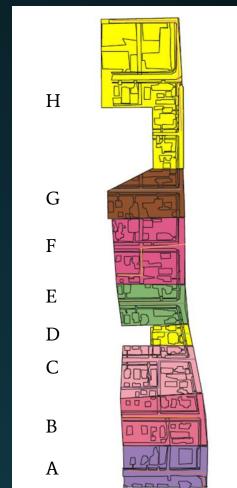


Figure 11: Sub Basins for Flow Calculation

Recommendation 3 - Stormwater Improvements: Existing Infrastructure

- 3D Global Mapper model of surface generated.
- Pipe networks drawn in Civil 3D.
 - Surface info and atlases provided by City.
- 8 stormwater pipe networks were generated.

		Inlet Correction (- 3		Length	
Pipe #	Inlet Height	feet)	Exit Height	(feet)	Slope(%)
н	5	2	0	928	0.22
G	5	2	0	171	1.17
F	7	4	0	177	2.26
E	8	5	0	203	2.46
D	10	7	0	294	2.38
С	10	7	0	242	2.89
В	10	7	0	279	2.51
А	8	5	2	190	1.58

Table 2: Pipe Slope Calculations

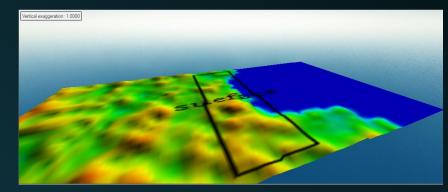


Figure 12: Surface Elevation Model

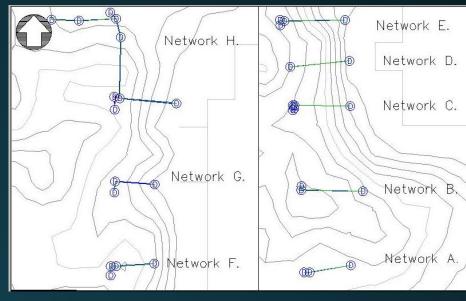
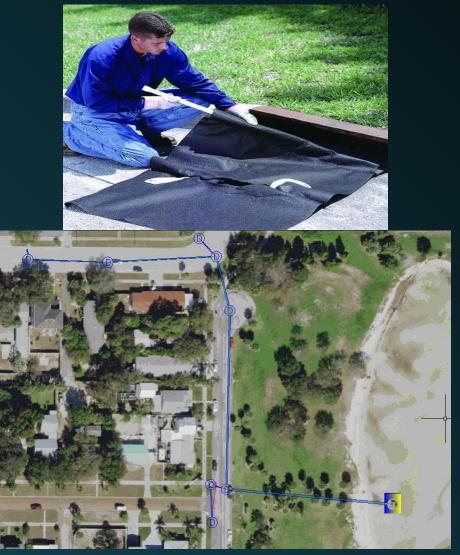
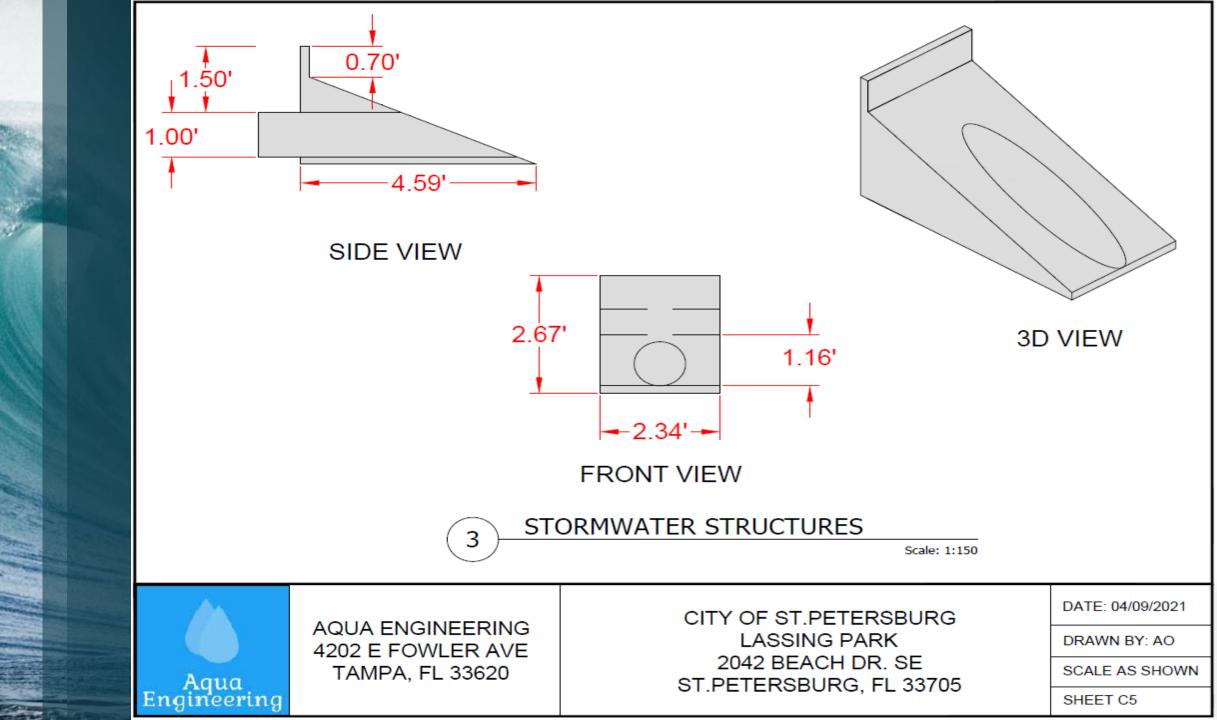


Figure 13: Stormwater Networks Model


Recommendation 3 - Stormwater Improvements

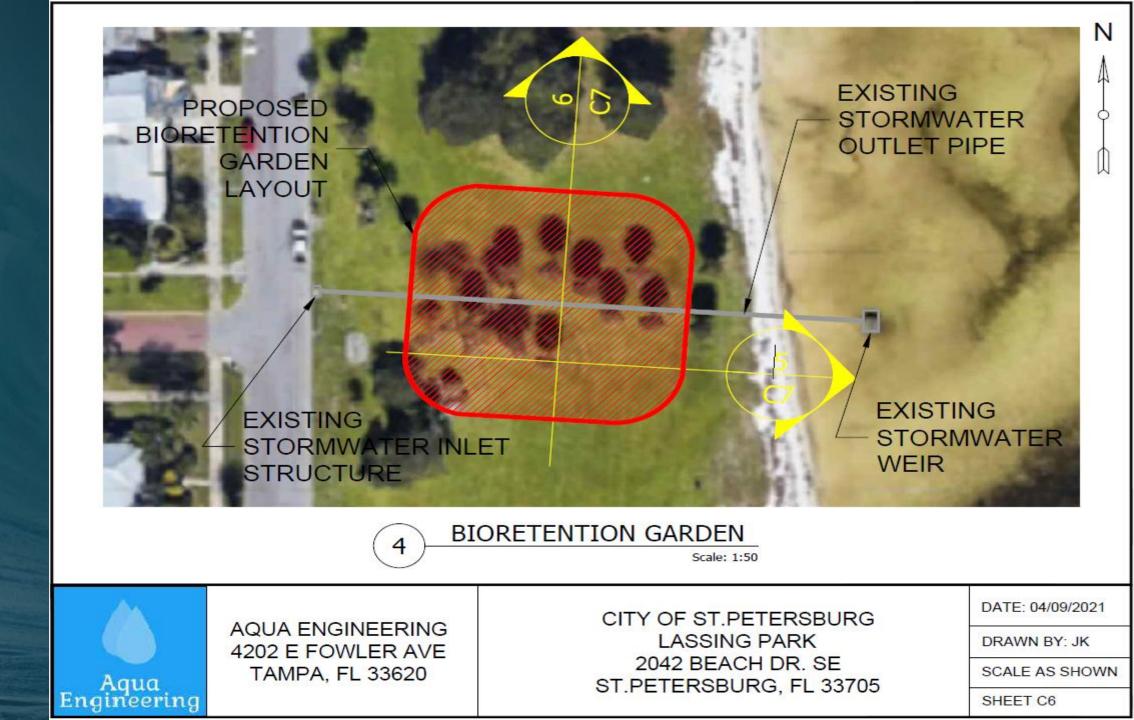
Fat Oil & Grease (FOG) Skimmers

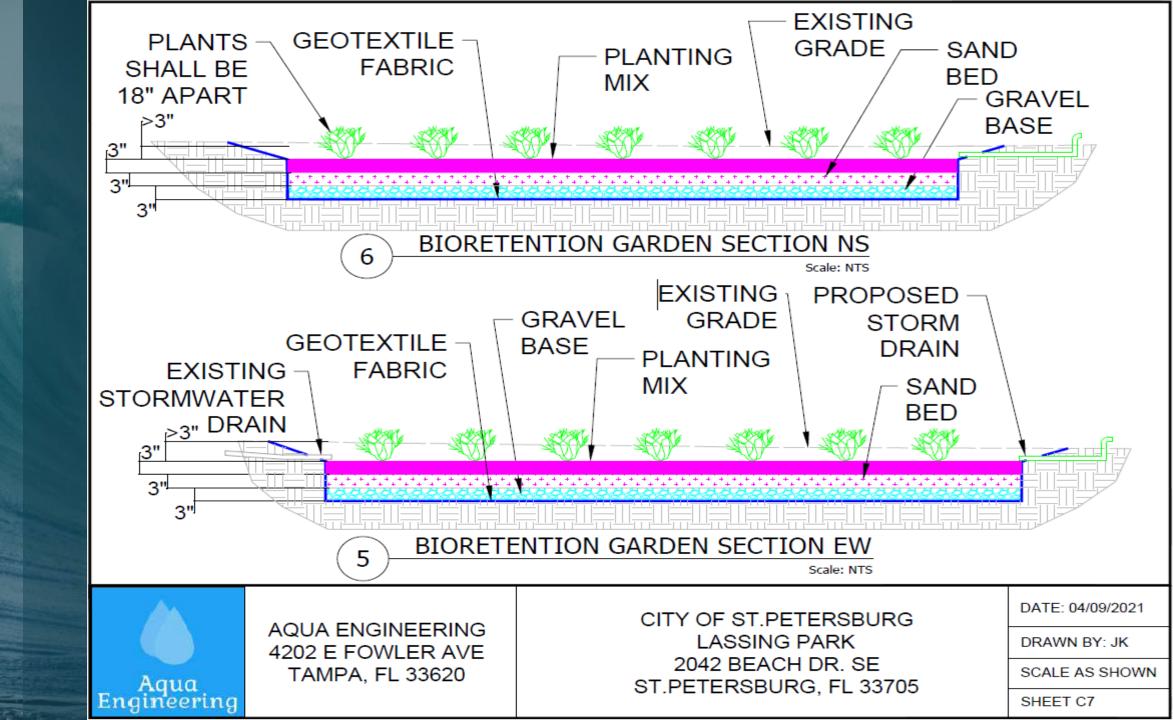

- Inserted in the stormwater curb inlets.
- Prevents disruption of the stormwater systems.

Concrete Armoring

- Benefit existing outlets
- Prevent sediment obstruction in the outflow.
- Capital Cost: \$21,000
- O&M: \$800/year

Figure 14: Stormwater Alternatives Considered 24

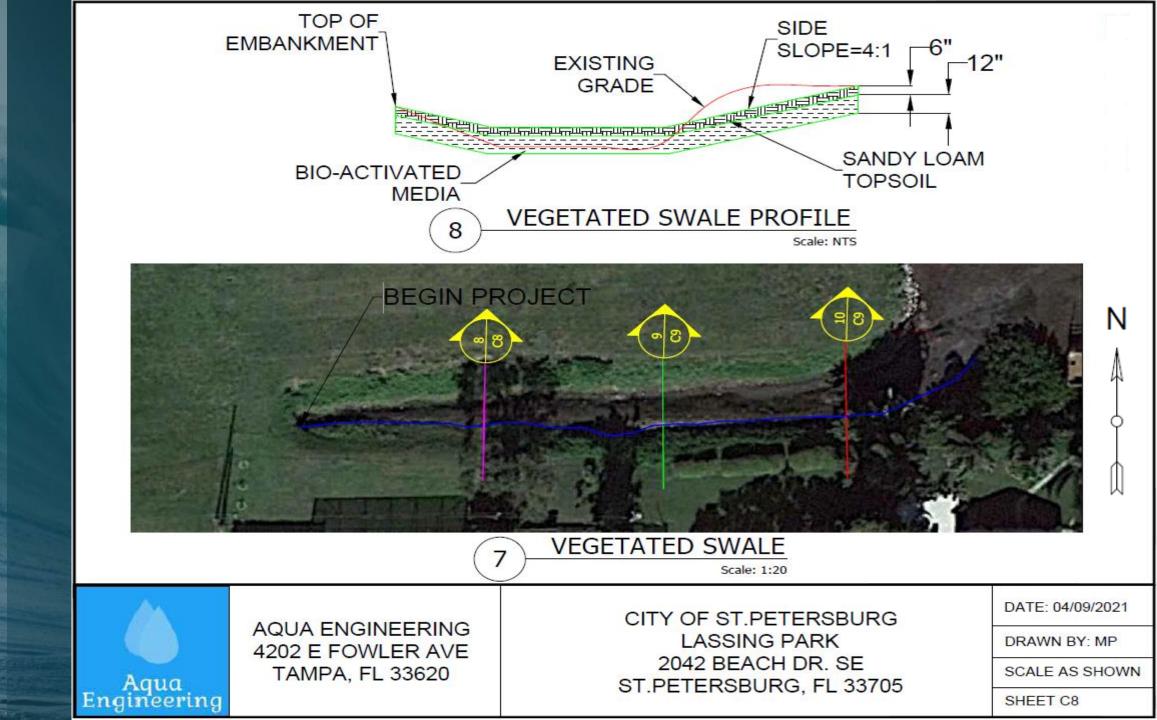



Recommendation 4 - Bioretention Bed

Design Criteria:

- Depth: I ft
- Area: 0.38 acres
- FL friendly vegetation and soil
- Non-toxic to dogs
- Capital Cost: \$418,000
- O&M: \$12,000/5 Years

Recommendation 5 - Vegetated Swale


- Vegetation incorporated to existing swale
- Modification/ resloping of existing swale
- Capital Cost: \$156,000
- O&M: \$12,000/10 Years

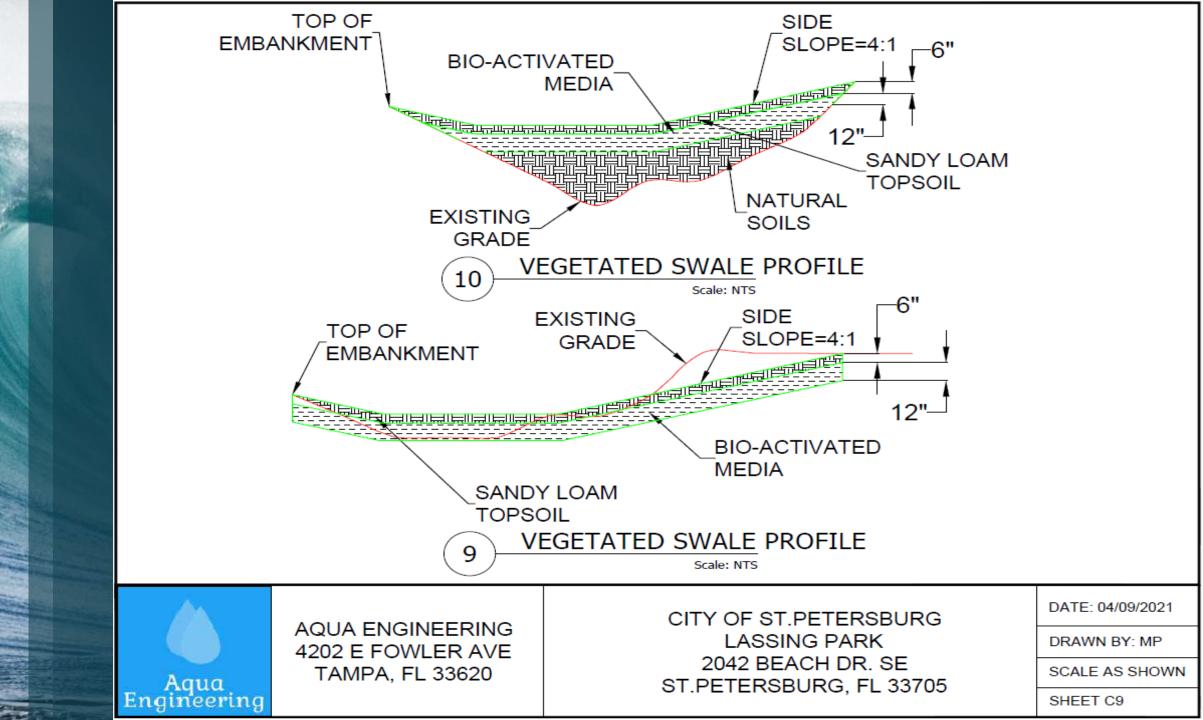


Table 3: Vegetated Swale Hydraulic Calculations

Parameter	Proposed
Slope (ft/ft)	1.28%
Velocity (ft/s)	4
Side Slope (ft/ft)	0.25
Roughness Coefficient	0.033
Hydraulic Radius (ft)	0.6923

Figure 13: Example of a Vegetated Swale

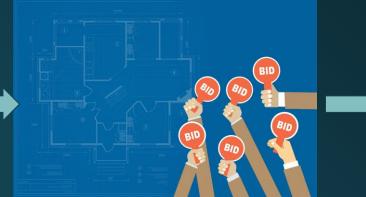
Evaluation of Recommendations

- A Pugh Matrix was used to weight each criteria and rank recommendations
- The Do Nothing Recommendation was evaluated as a baseline

Table 4: Pugh Matrix for Evaluation of Recommendations

Criteria	Weight	Recommendation					
		0. Do Nothing	I. Old Pier Removal	2. Geotextile & Living Shoreline	3. Stormwater Improvements	4. Bio- retention bed	5. Vegetated Swale
Cost (Initial + O&M)	4	10	7	8	10	I	5
Community Safety and Quality of Life	4	2	7	10	10	10	10
Control Erosion/Address WQ	5	Ι	6	8	8	7	6
Environmental Impact	2	2	4	7	10	10	10
Sustainability/Resilience	3	2	10	5	7	6	9
	Total	63	124	141	161	117	141

Table 5: Permitting


	Stormwater Improvements	Living Shoreline, Swale & Rain Garden	Construction & Administration
South West Florida Water Management District (SWFWMD)	YES	NO	NO
City of St. Petersburg	YES	NO	YES
Florida Administrative Code	YES	YES	YES
Florida Statutes	NO	NO	YES
Nationwide	YES	YES	NO

Schedule

• Implement project in the following phases:

- I. Stormwater Infrastructure Improvements
- 2. Vegetated Swale addition/re-design
- 3. Geotextile and Mangrove Living Shoreline
- 4. Bioretention Bed if funding allows

Acknowledgements

- Dr. Ergas: For orienting and giving us the feedback and resources to carry out a successful project.
- Tom Cross: For giving us insight into the problem and providing important knowledge on the problem at Lassing Park.
- Dr. Hapke: For giving us a professional opinion and judgement on the erosion problems at the beach.

Thank You!

Contact Information

Anna Zimmerman:

Email - <u>anna.zimmerman@verizon.net</u> Phone - 941-526-6738

Jordin Kahler:

Email - jkjordin@gmail.com Phone - 813-997-6735

Andres Lora Santos:

Email - <u>alorasantos@usf.edu</u> Phone - 813-706-8365

